230 research outputs found
Automatic landmarking for building biological shape models
We present a new method for automatic landmark extraction from the contours of biological specimens. Our ultimate goal is to enable automatic identification of biological specimens in photographs and drawings held in a database. We propose to use active appearance models for visual indexing of both photographs and drawings. Automatic landmark extraction will assist us in building the models. We describe the results of using our method on drawings and photographs of examples of diatoms, and present an active shape model built using automatically extracted data
Phonon-drag effects on thermoelectric power
We carry out a calculation of the phonon-drag contribution to the
thermoelectric power of bulk semiconductors and quantum well structures for the
first time using the balance equation transport theory extended to the weakly
nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation
times due to phonon-phonon interactions, the formula obtained can be used not
only at low temperatures where the phonon mean free path is determined by
boundary scattering, but also at high temperatures. In the linear transport
limit, is equivalent to the result obtained from the Boltzmann equation
with a relaxation time approximation. The theory is applied to experiments and
agreement is found between the theoretical predictions and experimental
results. The role of hot-electron effects in is discussed. The importance
of the contribution of to thermoelectric power in the hot-electron
transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques
Thermoelectric power of nondegenerate Kane semiconductors under the conditions of mutual electron-phonon drag in a high electric field
The thermoelectric power of nondegenerate Kane semiconductors with due regard
for the electron and phonon heating, and their thermal and mutual drags is
investigated. The electron spectrum is taken in the Kane two-band form. It is
shown that the nonparabolicity of electron spectrum significantly influences
the magnitude of the thermoelectric power and leads to a change of its sign and
dependence on the heating electric field. The field dependence of the
thermoelectric power is determined analytically under various drag conditions.Comment: 25 pages, RevTex formatted, 3 table
Resonant thermal transport in semiconductor barrier structures
I report that thermal single-barrier (TSB) and thermal double-barrier (TDB)
structures (formed, for example, by inserting one or two regions of a few Ge
monolayers in Si) provide both a suppression of the phonon transport as well as
a resonant-thermal-transport effect. I show that high-frequency phonons can
experience a traditional double-barrier resonant tunneling in the TDB
structures while the formation of Fabry-Perot resonances (at lower frequencies)
causes quantum oscillations in the temperature variation of both the TSB and
TDB thermal conductances and .Comment: 4 pages. 4 figure.
Metallic liquid hydrogen and likely Al2O3 metallic glass
Dynamic compression has been used to synthesize liquid metallic hydrogen at
140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might
be a metallic glass at ~300 GPa. The mechanism of metallization in both cases
is probably a Mott-like transition. The strength of sapphire causes shock
dissipation to be split differently in the strong solid and soft fluid. Once
the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in
liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized,
which leads to formation of energy bands in fluid H and probably in amorphous
Al2O3. The high strength of sapphire causes shock dissipation to be absorbed
primarily in entropy up to ~400 GPa, which also causes the 300-K isotherm and
Hugoniot to be virtually coincident in this pressure range. Above ~400 GPa
shock dissipation must go primarily into temperature, which is observed
experimentally as a rapid increase in shock pressure above ~400 GPa. The
metallization of glassy Al2O3, if verified, is expected to be general in strong
oxide insulators. Implications for Super Earths are discussed.Comment: 8 pages, 5 figures, 14th Liquid and Amorphous Metals Conference, Rome
201
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
- …