9 research outputs found

    A preliminary investigation into the ecology and behavior of blue whales (Balaenoptera musculus) in the Gulf of Corcovado, Chile

    Get PDF
    A joint effort between WHOI and the Melimoyu Ecosystem Research Institute (MERI) sought to gain a better understanding of a population of blue whales (Balaenoptera musculus) in the Gulf of Corcovado, Chile. A cruise in March 2014 resulted in the deployment of 5 DTAGs, which are miniature sound and orientation recording tags that are attached via suction cups. A total of five tag deployments on four individual whales were achieved, totaling 21 hr 11 min. Dives were predominantly between 10 and 50 m in depth, with a maximum of 139 m. Sloughed skin found on the suction cups of recovered tags and fecal samples were preserved to be used for genetic, dietary and pollutant analyses. Acoustic data on the tags revealed numerous calls from distant blue whales, and an apparent call exchange was recorded between a tagged juvenile whale and a distant animal. Photo-identification images and acoustic recordings of all marine mammal species encountered were obtained whenever possible; these included humpback whales (Megaptera novaeangliae), Peale’s dolphins (Lagenorhynchus australis), Chilean dolphins (Cephalorhynchus eutropia), and bottlenose dolphins (Tursiops truncatus). Continuation of this collaboration has great potential to provide information to policy makers regarding how to protect the unique habitats in this region.Funding was provided by the Melimoyu Ecosystem Research Institut

    Spatio-temporal variation in click production rates of beaked whales : implications for passive acoustic density estimation

    Get PDF
    T.A.M. was funded under Grant No. N000141010382 from the Office of Naval Research (LATTE project) and thanks support by CEAUL (funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013). M.P.J. was funded by a Marie Curie Career Integration Grant and M.P.J. and P.L.T. were funded by MASTS (The Marine Alliance for Science and Technology for Scotland, a research pooling initiative funded by the Scottish Funding Council under grant HR09011 and contributing institutions). L.S.H. thanks the BRS Bahamas team that helped collect the Bahamas data, and A. Bocconcelli. D.H. and L.T. were funded by the Office of Naval Research (Award No. N00014-14-1-0394). N.A.S. was funded by an EU-Horizon 2020 Marie Slodowska Curie fellowship (project ECOSOUND). DTAG data in the Canary Islands were collected with funds from the U.S. Office of Naval Research and Fundación Biodiversidad (EU project LIFE INDEMARES) with permit from the Canary Islands and Spanish governments.Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.PostprintPeer reviewe

    Photogrammetry of blue whales with an unmanned hexacopter

    Get PDF
    Author Posting. © Society for Marine Mammalogy, 2016. This article is posted here by permission of Society for Marine Mammalogy for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 32 (2016):1510–1515, doi:10.1111/mms.12328.Baleen whales are the largest animals ever to live on earth, and many populations were hunted close to extinction in the 20th century (Clapham et al. 1999). Their recovery is now a key international conservation goal, and they are important in marine ecosystems as massive consumers that can promote primary production through nutrient cycling (Roman et al. 2014). However, although abundance has been assessed to monitor the recovery of some large whale populations (e.g., Barlow et al. 2011, Laake et al. 2012) many populations are wide-ranging and pelagic, and this inaccessibility has generally impeded quantitative assessments of recovery (Peel et al. 2015). To augment traditional abundance monitoring, we suggest that photogrammetric measures of individual growth and body condition can also inform about population status, enabling assessment of individual health as well as population numbers. Photogrammetry from manned aircraft has used photographs taken from directly above whales to estimate individual lengths (Gilpatrick and Perryman 2008) and monitor growth trends (Fearnbach et al. 2011), and shape profiles can be measured to assess body condition to infer reproductive and nutritional status (e.g., Perryman and Lynn 2002, Miller et al. 2012). Recently, Durban et al. (2015) demonstrated the utility of an unmanned hexacopter for collecting aerial photogrammetry images of killer whales (Orcinus orca); this provided a noninvasive, cost-effective, and safe platform that could be deployed from a boat to obtain vertical images of whales. Here we describe the use of this small, unmanned aerial system (UAS) to measure length and condition of blue whales (Balaenoptera musculus), the largest of all whales.María Francisca Cortés Solari; Rafaela Landea Briones; MERI Foundation; Woods Hole Oceanographic Institution Acces

    Behavioral responses of satellite tracked Blainville's beaked whales (Mesoplodon densirostris) to mid-frequency active sonar

    Get PDF
    Funding support for tagging was provided by the US Navy's Office of Naval Research and Living Marine Resources program, the Chief of Naval Operations' Energy and Environmental Readiness Division and the NOAA Fisheries Ocean Acoustics Program. Trevor Joyce was supported by a National Research Council postdoctoral research associateship, hosted by NOAA's Southwest Fisheries Science Center.The vulnerability of beaked whales (Family: Ziphiidae) to intense sound exposure has led to interest in their behavioral responses to mid‐frequency active sonar (MFAS, 3–8 kHz). Here we present satellite‐transmitting tag movement and dive behavior records from Blainville's beaked whales (Mesoplodon densirostris) tagged in advance of naval sonar exercises at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas. This represents one of the largest samples of beaked whales individually tracked during sonar operations (n = 7). The majority of individuals (five of seven) were displaced 28–68 km after the onset of sonar exposure and returned to the AUTEC range 2–4 days after exercises ended. Modeled sound pressure received levels were available during the tracking of four individuals and three of those individuals showed declines from initial maxima of 145–172 dB re 1 μPa to maxima of 70–150 dB re 1 μPa following displacements. Dive behavior data from tags showed a continuation of deep diving activity consistent with foraging during MFAS exposure periods, but also suggested reductions in time spent on deep dives during initial exposure periods. These data provide new insights into behavioral responses to MFAS and have important implications for modeling the population consequences of disturbance.Publisher PDFPeer reviewe

    A decade of photo-identification reveals contrasting abundance and trends of Type B killer whales in the coastal waters of the Antarctic Peninsula

    No full text
    The Antarctic Peninsula (AP) is rapidly warming and empirical data on abundance trends of marine organisms are required to understand the impact of these physical changes, and interacting anthropogenic impacts, on the ecosystem. Recent estimates inferred increasing abundance of Type A killer whales at the top of this food chain, and here we provide new data on the abundance of Type B1 and B2 killer whales using photographic mark-recaptures collected during austral summers from 2008/2009 to 2017/2018. Both ecotypes were regularly photographed around the AP coastline, particularly off the west side, and individuals of both showed site fidelity across years. B1s had a higher re-identification rate (58% photographed in multiple years, range: 1-7 years) compared to B2s (31%, 1-4 years). We fit mark-recapture models that allowed temporary emigration beyond the study area, to effectively monitor the size of wide-ranging populations and documented contrasting trends for B1s and B2s. A smaller population size (~102) of B1s was estimated to use the area, with a declining trend in abundance (-4.7% per year) and reduced apparent survival in recent years. In contrast, a much larger population size (~740) of B2s was estimated to be generally stable in abundance and apparent survival over the past decade

    Characterizing Chilean blue whale vocalizations with DTAGs:a test of using tag accelerometers for caller identification

    No full text
    Vocal behavior of blue whales (Balaenoptera musculus) in the Gulf of Corcovado, Chile, was analysed using both audio and accelerometer data from digital acoustic recording tags (DTAGs). Over the course of three austral summers (2014, 2015 and 2016), seventeen tags were deployed, yielding 124 h of data. We report the occurrence of Southeast Pacific type 2 (SEP2) calls, which exhibit peak frequencies, durations and timing consistent with previous recordings made using towed and moored hydrophones. We also describe tonal downswept (D) calls, which have not been previously described for this population. As being able to accurately assign vocalizations to individual whales is fundamental for studying communication and for estimating population densities from call rates, we further examine the feasibility of using high-resolution DTAG accelerometers to identify low-frequency calls produced by tagged blue whales. We cross-correlated acoustic signals with simultaneous tri-axial accelerometer readings in order to analyse the phase match as well as the amplitude of accelerometer signals associated with low-frequency calls, which provides a quantitative method of determining if a call is associated with a detectable acceleration signal. Our results suggest that vocalizations from nearby individuals are also capable of registering accelerometer signals in the tagged whale's DTAG record. We cross-correlate acceleration vectors between calls to explore the possibility of using signature acceleration patterns associated with sounds produced within the tagged whale as a new method of identifying which accelerometer-detectable calls originate from the tagged animal

    Behavioral responses of satellite tracked Blainville's beaked whales (<i>Mesoplodon densirostris</i>) to mid-frequency active sonar

    No full text
    The vulnerability of beaked whales (Family: Ziphiidae) to intense sound exposure has led to interest in their behavioral responses to mid‐frequency active sonar (MFAS, 3–8 kHz). Here we present satellite‐transmitting tag movement and dive behavior records from Blainville's beaked whales (Mesoplodon densirostris) tagged in advance of naval sonar exercises at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas. This represents one of the largest samples of beaked whales individually tracked during sonar operations (n = 7). The majority of individuals (five of seven) were displaced 28–68 km after the onset of sonar exposure and returned to the AUTEC range 2–4 days after exercises ended. Modeled sound pressure received levels were available during the tracking of four individuals and three of those individuals showed declines from initial maxima of 145–172 dB re 1 μPa to maxima of 70–150 dB re 1 μPa following displacements. Dive behavior data from tags showed a continuation of deep diving activity consistent with foraging during MFAS exposure periods, but also suggested reductions in time spent on deep dives during initial exposure periods. These data provide new insights into behavioral responses to MFAS and have important implications for modeling the population consequences of disturbance
    corecore