11 research outputs found

    Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    Get PDF
    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on the parasite side of the interaction. Our findings shed new light on how and why invertebrate immunity develops

    Stress Monitoring in Steel Elements via Detection of AC Magnetic Permeability Changes

    No full text
    The influence of mechanical stress on low frequency AC magnetic permeability was studied. The cold-drawn bars with C45 steel were subjected to investigation. The tensile stress (within elastic regime) was applied by means of material testing machine. Simple measuring system was assembled, which consisted of: function generator with magnetizing coil, detection coil and precise AC voltmeter. The registered changes of induced voltage were proportional to the change of magnetic permeability of the stretched rods. The obtained results were almost frequency-independent due to low frequency limit (250-500 Hz, weak eddy currents, no spin-origin energy dissipation). A significant magneto-mechanical hysteresis was observed slightly evolving from cycle to cycle with tendency of stabilization. The extension of basic Stoner-Wohlfarth model of magnetic permeability allowed to fit the data reproducing hysteretic behavior and considering the relaxation of the internal stress. The proposed, low-cost method is suitable in the industrial applications for stress control in large-sized steel elements

    Design and Therapeutic Application of Matrix Metalloproteinase Inhibitors

    No full text

    Industrial hygiene

    No full text

    Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA

    No full text
    corecore