7 research outputs found

    Stem cell factor/c-Kit signalling in normal and androgenetic alopecia hair follicles

    No full text
    Androgens stimulate many hair follicles to alter hair colour and size via the hair growth cycle; in androgenetic alopecia tiny, pale hairs gradually replace large, pigmented ones. Since stem cell factor (SCF) is important in embryonic melanocyte migration and maintaining adult rodent pigmentation, we investigated SCF/c-Kit signalling in human hair follicles to determine whether this was altered in androgenetic alopecia. Quantitative immunohistochemistry detected three melanocyte-lineage markers and c-Kit in four focus areas: the epidermis, infundibulum, hair bulb (where pigment is formed) and mid-follicle outer root sheath (ORS). Colocalisation confirmed melanocyte c-Kit expression; cultured follicular melanocytes also exhibited c-Kit. Few ORS cells expressed differentiated melanocyte markers or c-Kit, but NKI/beteb antibody, which also recognises early melanocyte-lineage antigens, identified fourfold more cells, confirmed by colocalisation. Occasional similar bulbar cells were seen. Melanocyte distribution, concentration and c-Kit expression were unaltered in balding follicles. Androgenetic alopecia cultured dermal papilla cells secreted less SCF, measured by ELISA, than normal cells. This identifies three types of melanocyte-lineage cells in human follicles. The c-Kit expression by dendritic, pigmenting, bulbar melanocytes and rounded, differentiated, non-pigmenting ORS melanocytes implicate SCF in maintaining pigmentation and migration into regenerating hair bulbs. Less differentiated, c-Kit-independent cells in the mid-follicle ORS stem cell niche and occasionally in the bulb, presumably a local reserve for long scalp hair growth, implicate other factors in activating stem cells. Androgens appear to reduce alopecia hair colour by inhibiting dermal papilla SCF production, impeding bulbar melanocyte pigmentation. These results may facilitate new treatments for hair colour changes in hirsutism, alopecia or greying

    Pterins in Human Hair Follicle Cells and in the Synchronized Murine Hair Cycle

    Get PDF
    Human dermal papilla cells (HDPC) express mRNA for the key enzymes for de novo synthesis/recycling and regulation of the pterin (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (6BH4). HDPC had significantly higher enzyme activities and 6BH4 levels in a comparative study with dermal fibroblasts, epidermal melanocytes, and keratinocytes under in vitro conditions. In addition, a significantly more rapid uptake of 14C-L-phenylalanine was demonstrated in HDPC compared with fibroblasts, whereas the differences in turnover to L-tyrosine were insignificant, suggesting a pooling of L-phenylalanine in HDPC. These results suggested that HDPC driven 6BH4 synthesis could be of major functional importance in the hair cycle. In order to follow this hypothesis in vivo, expression of enzyme activities and levels of the produced cofactor during the synchronized hair cycle were determined employing the murine model C57BL/6. These data revealed a significantly increased de novo synthesis for 6BH4 via GTP-cyclohydrolase I concomitant with high levels of 6BH4, and the induction of phenylalanine hydroxylase activities during the telogen/early anagen stage (days 0–1). Pterin levels and enzyme activities fall on day 3 and plateau during the rest of the entire cycle. In addition, thioredoxin reductase and glutathione reductase activities were measured, where the latter enzyme remained constant but thioredoxin reductase activities showed a biphasic behavior. The first peak coincided with the induction of 6BH4de novo synthesis at the beginning of the hair cycle. The second peak was observed at mid-anagen, when melanogenesis takes place. Taken together, our results show the presence of autocrine pterin synthesis/recycling in human hair follicle cells under in vitro conditions, and a possible role for 6BH4 in the synchronized murine hair cycle

    Autocrine catecholamine biosynthesis and the b- adrenoceptor signal is present in Human Epidermal Melanocytes

    No full text
    NoEarlier it has been shown that human proliferating/undifferentiated basal keratinocytes hold the full capacity for autocrine catecholamine synthesis/degradation and express b2-adrenoceptors (b2-AR). In this report, we show that human melanocytes also express all of the mRNA and enzymes for autocrine synthesis of norepinephrine but fail to produce epinephrine. So far, it was established that human melanocytes express b1-AR which are induced by norepinephrine yielding the inosine triphosphate diacylglycerol signal. The presence of catecholamine synthesis and the b2-AR signal escaped definition at that time. Using RT-PCR, immunofluorescence and radioligand binding with the b2-AR antagonist (-)-[3H]CGP 12177, we show here that human melanocytes express functional b2-AR (4230 receptors per cell) with a Bmax at 129.3 and a KD of 3.19 nM but lack b1-AR expression. 2-AR stimulation with epinephrine 10-6 M and salbutamol 10-6¿10-5 M yielded a strong cyclic adenosine monophospate (cAMP) response in association with upregulated melanin production. Taken together these results indicate that the biosynthesis and release of epinephrine (10-6 M) by surrounding keratinocytes can provide the cAMP response leading to melanogenesis in melanocytes via the b2-AR signal. Moreover, the discovery of this catecholaminergic cAMP response in melanocytes adds a new source for this important second messenger in melanogenesis

    In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase

    Get PDF
    To date there is compelling in vitro and in vivo evidence for epidermal H2O2 accumulation in vitiligo. This paper reviews the literature and presents new data on oxidative stress in the epidermal compartment of this disorder. Elevated H2O2 levels can be demonstrated in vivo in patients compared with healthy controls by utilizing Fourier-Transform Raman spectroscopy. H2O2 accumulation is associated with low epidermal catalase levels. So far, four potential sources for epidermal H2O2 generation in vitiligo have been identified: (i) perturbed (6R)-L-erythro 5,6,7,8 tetrahydrobiopterin (6BH4) de novo synthesis/recycling/regulation; (ii) impaired catecholamine synthesis with increased monoamine oxidase A activities; (iii) low glutathione peroxidase activities; and (iv) "oxygen burst" via NADPH oxidase from a cellular infiltrate. H2O2 overproduction can cause inactivation of catalase as well as vacuolation in epidermal melanocytes and keratinocytes. Vacuolation was also observed in vitro in melanocytes established from lesional and nonlesional epidermis of patients (n = 10) but was reversible upon addition of catalase. H2O2 can directly oxidize 6BH4 to 6-biopterin, which is cytotoxic to melanocytes in vitro. Therefore, we substituted the impaired catalase with a "pseudocatalase". Pseudocatalase is a bis-manganese III-EDTA-(HCO3-)2 complex activated by UVB or natural sun. This complex has been used in a pilot study on 33 patients, showing remarkable repigmentation even in long lasting disease. Currently this approach is under worldwide clinical investigation in an open trial. In conclusion, there are several lines of evidence that the entire epidermis of patients with vitiligo is involved in the disease process and that correction of the epidermal redox status is mandatory for repigmentation
    corecore