49 research outputs found
Potentiation of raloxifene cytotoxicity against MCF-7 breast cancer cell lines via transdermal delivery and loading on self-emulsifying nanoemulsions
Purpose: To enhance raloxifene (RLX) delivery and cytotoxicity against breast cancer (MCF-7) cell lines.
Methods: This was a solubility study of RLX in different oils, surfactants, and co-surfactants. Twelve formulae were tested to reach the smallest globular size, and hydroxypropyl methylcellulose, (HPMC), and Carbopol 947 polymers were tested for formation of transdermal films. The formula with the lowest size was compared with raw RLX in diffusion studies using a Franz diffusion cell. Finally, a cytotoxicity study against MCF-7 breast cancer cell lines was conducted.
Results: The maximum solubility of RLX was in Tween 80, peppermint oil, and PEG 200; therefore, these were the main components of the 12 formulations. The release of RLX loaded on the selfnanoemulsion drug delivery system (SNEDDS) was increased 3-fold compared with raw RLX.Cytotoxicity results revealed that RLX SNEDDs decreased MCF-7 cell survival by approximately 40 %, compared with raw RLX (control), which augmented the RLX suppression of breast cancer cell lines.
Conclusion: Improvement in RLX cytotoxicity is a novel strategy to suppress breast cancer.
Keywords: Raloxifene, Osteoporosis, Bioavailability, Nanoemulsion, Nanoparticle
Potential Use of C
The photosensitizing ability of C60/2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) nanoparticles under visible light irradiation was studied by electron spin resonance (ESR) and phototoxicity on cancer cells. In addition, the photoinduced antitumor effect to the tumor-bearing mice was evaluated. C60 nanoparticles were prepared by grinding a mixture of HP-β-CyD. The resulting C60/HP-β-CyD nanoparticles were highly-sensitive to visible light and generated higher levels of 1O2 than protoporphyrin IX (PpIX). C60/HP-β-CyD reduced the viability of cancer cells (HeLa cells and A549 cells) in response to irradiation by visible light in a dose-dependent manner. The IC50 values of the C60/HP-β-CyD nanoparticles was 10 μM for HeLa cells and 60 μM for A549 cells at an irradiation level of 35 mW/cm2. The photodynamic effect of C60/HP-β-CyD nanoparticles on the in vivo growth of mouse sarcoma S-180 cells was evaluated after intratumor injection. The outcome of PDT by C60/HP-β-CyD was directly dependent on the dose of irradiated light. Treatment with C60/HP-β-CyD nanoparticles at a C60 dose of 2.0 mg/kg under visible light irradiation at 350 mW/cm2 (63 J/cm2) markedly suppressed tumor growth, whereas that at 30 J/cm2 was less effective. These findings suggest that C60/HP-β-CyD nanoparticles represent a promising candidate for use in cancer treatment by PDT
Anticonvulsant and Neuroprotective Activities of Phragmanthera austroarabica
Anticonvulsant and neuroprotective activity of Phragmanthera austroarabica extract were tested in pentylenetetrazole-kindled mice. All the chemical constituents of the plant extract were identified. Additionally, the extract was standardized and proved to contain total phenolic contents equal to 379.92±1.32 mg gallic acid equivalents/g dry plant extract. Induction of kindling was achieved by repeated intraperitoneal administration of pentylenetetrazole (35 mg/kg) twice weekly. Male albino mice were given P. austroarabica extract (200, 400, or 800 mg/kg). The two higher doses (400 or 800 mg/kg) of the extract significantly caused notable reduction in seizure activity and hippocampal malondialdehyde level compared to pentylenetetrazole control group. The highest dose enhanced cortical GSH level and showed intact DNA in the laddering assay. Upon studying the neuroprotective effect, mice treated with the higher dose of the extract demonstrated an improvement in the percent of surviving neurons in the cortex and hippocampus. We concluded that P. austroarabica extract ameliorated seizure activity and protected cortical and hippocampal neurons against pentylenetetrazole-induced kindling in mice
Evaluation of Hepatoprotective Activity of Adansonia digitata
The methanol extract of the fruit pulp of Adansonia digitata L. (Malvaceae) was examined for its hepatoprotective activity against liver damage induced by acetaminophen in rats. The principle depends on the fact that administration of acetaminophen will be associated with development of oxidative stress. In addition, hepatospecific serum markers will be disturbed. Treatment of the rats with the methanol extract of the fruit pulp of Adansonia digitata L. prior to administration of acetaminophen significantly reduced the disturbance in liver function. Liver functions were measured by assessment of total protein, total bilirubin, ALP, ALT, and AST. Oxidative stress parameter and antioxidant markers were also evaluated. Moreover, histopathological evaluation was performed in order to assess liver case regarding inflammatory infiltration or necrosis. Animals were observed for any symptoms of toxicity after administration of extract of the fruit pulp of Adansonia digitata L. to ensure safety of the fruit extract
Evaluation of Hepatoprotective Activity of Adansonia digitata Extract on Acetaminophen-Induced Hepatotoxicity in Rats
The methanol extract of the fruit pulp of Adansonia digitata L. (Malvaceae) was examined for its hepatoprotective activity against liver damage induced by acetaminophen in rats. The principle depends on the fact that administration of acetaminophen will be associated with development of oxidative stress. In addition, hepatospecific serum markers will be disturbed. Treatment of the rats with the methanol extract of the fruit pulp of Adansonia digitata L. prior to administration of acetaminophen significantly reduced the disturbance in liver function. Liver functions were measured by assessment of total protein, total bilirubin, ALP, ALT, and AST. Oxidative stress parameter and antioxidant markers were also evaluated. Moreover, histopathological evaluation was performed in order to assess liver case regarding inflammatory infiltration or necrosis. Animals were observed for any symptoms of toxicity after administration of extract of the fruit pulp of Adansonia digitata L. to ensure safety of the fruit extract
Improvement of solubility, dissolution, and bioavailability of phenytoin intercalated in Mg-Al layered double hydroxide
Layered double hydroxides (LDHs) are highly effective drug delivery systems, owing to their capacity to intercalate or adsorb biomaterials, flexible structure, swelling property, high stability, good biocompatibility, and ease of synthesis. Phenytoin (PHT) is an antiseizure BCS (Biopharmaceutics Classification System) class II drug, presenting low aqueous solubility. Therefore, the current study aimed at increasing its solubility, dissolution, and bioavailability. PHT was intercalated to the MgAl-LDH formed in situ and successful intercalation to form MgAl-PHT-LDH was confirmed by FTIR, PXRD, DSC, and TGA. Examination of particle size and morphology (by photon correlation spectroscopy and electron microscopy, respectively) confirmed the formation and intercalation of nanostructured LDH. Intercalation enhanced the saturation solubility of PHT at 25°C in 0.1N HCl and phosphate buffer (pH 6.8) by 6.57 and 10.5 times respectively. The selected drug excipient powder blend for the formulation of MgAl-PHT-LDH tablets exhibited satisfactory properties in both pre-compression parameters (angle of repose, bulk density, tapped density, Carr’s index, and Hausner ratio) and tablet characteristics (weight variation, thickness, hardness, friability, content uniformity, and disintegration time). MgAl-PHT-LDH tablets showed better dissolution of PHT compared to unprocessed PHT tablets at all time points. Oral bioavailability of MgAl-PHT-LDH tablets and unprocessed PHT tablets was tested in two groups of Sprague Dawley rats based on analysis of serum levels of both forms of PHT by UPLC-ESI-MS/MS serum. MgAl-PHT-LDH tablets demonstrated a relative bioavailability of 130.15% compared to unprocessed PHT tablets, confirming a significantly higher oral bioavailability of MgAl-PHT-LDH. In conclusion, MgAl-PHT-LDH could provide a strategy for enhancing solubility, dissolution, and thereby bioavailability of PHT, enabling the evaluation of theclinical efficacy of MgAl-PHT-LDH tablets for the treatment of seizures at lower PHT doses
Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole
Fluconazole (FLZ) is the most widely used antifungal agent for treating cutaneous candidiasis. Although oral FLZ has been proved to be effective, the incidence of side effects necessitates the development of an effective formulation that could surpass the pitfalls associated with systemic availability. Accordingly, this research aimed at developing a self-assembled mixed micelles topical delivery system to enhance the topical delivery of the drug. Self-assembled mixed micelles were developed using D-α-tocopheryl polyethylene glycol 1000 succinate and phospholipids and optimized using Box-Behnken design. The optimized formulation with minimized size was then tested in vivo for the antifungal activity against C. albicans in immunocompromised mice. Treatment with the optimized formulation led to decreased peripheral erythema as well as lesions due to fungal infection in comparison to raw FLZ loaded gel. Therefore, the developed formulation was found to be a promising vehicle for the treatment of cutaneous candidiasis
Effects of the CB1 receptor antagonists AM6545 and AM4113 on metabolic syndrome-induced prostatic hyperplasia in rats
Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects
Optimized Chitosan/Anion Polyelectrolyte Complex Based Inserts for Vaginal Delivery of Fluconazole: In Vitro/In Vivo Evaluation
(1) Background: Fluconazole, used orally for vaginal candidiasis, has reported gastrointestinal side effects. Therefore, researchers directed towards the drug vaginal delivery. However, vaginal delivery is limited by poor retention and leakage. Thus, this work aimed at exploring chitosan/anion polyelectrolyte complex (PEC) for the formulation of fluconazole vaginal inserts with controlled release and appreciable mucoadhesion. (2) Methods: PECs were prepared and assessed for interactions. Fluconazole PEC based vaginal inserts were prepared by lyophilization using mannitol. 3151 factorial design was applied to investigate the effect of the anion type and Chitosan/anion ratio on the inserts mucoadhesion and release properties. The optimized insert [based on 5:5 chitosan: anionic polymer (sodium alginate)] release was modulated by the release retardant; Compritol® 888. The selected formulation was subjected to microbiological and histological evaluation. (3) Results: Fluconazole inserts showed satisfactory drug content, acceptable friability percentages and highest swelling indices at six hours. Statistical analysis showed significant effect of the studied factors on detachment force and release properties. Microbiological assays revealed significantly higher antifungal activity of inserts compared to fluconazole solution. Reduced inflammatory cells were confirmed by histological evaluation. (4) Conclusion: CH/Alg based vaginal insert could be a promising platform for vaginal delivery of antifungal drugs used for vaginal candidiasis treatment
Formulation and Optimization of Avanafil Biodegradable Polymeric Nanoparticles: A Single-Dose Clinical Pharmacokinetic Evaluation
Avanafil (AVA) is a second-generation phosphodiesterase-5 (PDE5) inhibitor. AVA shows high selectivity to penile tissues and fast absorption, but has a bioavailability of about 36%. The aim was to formulate and optimize AVA-biodegradable nanoparticles (NPs) to enhance AVA bioavailability. To assess the impact of variables, the Box–Behnken design was utilized to investigate and optimize the formulation process variables: the AVA:poly (lactic-co-glycolic acid) (PLGA) ratio (w/w, X1); sonication time (min, X2); and polyvinyl alcohol (PVA) concentration (%, X3). Particle size (nm, Y1) and EE% (%, Y2) were the responses. The optimized NPs were characterized for surface morphology and permeation. Furthermore, a single-oral dose (50 mg AVA) pharmacokinetic investigation on healthy volunteers was carried out. Statistical analysis revealed that all the investigated factors exhibited a significant effect on the particle size. Furthermore, the entrapment efficiency (Y2) was significantly affected by both the AVA:PLGA ratio (X1) and PVA concentration (X3). Pharmacokinetic data showed a significant increase in the area under the curve (1.68 folds) and plasma maximum concentration (1.3-fold) for the AVA NPs when compared with raw AVA. The optimization and formulation of AVA as biodegradable NPs prepared using solvent evaporation (SE) proves a successful way to enhance AVA bioavailability