1,350 research outputs found

    Alcohol, tobacco and breast cancer: should alcohol be condemned and tobacco acquitted?

    Get PDF
    British Journal of Cancer (2002) 87, 1195–1196. doi:10.1038/sj.bjc.6600633 www.bjcancer.co

    Enhancing Grant-Writing Expertise in BUILD Institutions: Building Infrastructure Leading to Diversity

    Get PDF
    Background The lack of race/ethnic and gender diversity in grants funded by the National Institutes of Health (NIH) is a persistent challenge related to career advancement and the quality and relevance of health research. We describe pilot programs at nine institutions supported by the NIH-sponsored Building Infrastructure Leading to Diversity (BUILD) program aimed at increasing diversity in biomedical research. Methods We collected data from the 2016–2017 Higher Education Research Institute survey of faculty and NIH progress reports for the first four years of the program (2015–2018). We then conducted descriptive analyses of data from the nine BUILD institutions that had collected data and evaluated which activities were associated with research productivity. We used Poisson regression and rate ratios of the numbers of BUILD pilots funded, students included, abstracts, presentations, publications, and submitted and funded grant proposals. Results Teaching workshops were associated with more abstracts (RR 4.04, 95% CI 2.21–8.09). Workshops on grant writing were associated with more publications (RR 2.64, 95% CI 1.64–4.34) and marginally with marginally more presentations. Incentives to develop courses were associated with more abstracts published (RR 4.33, 95% CI 2.56–7.75). Workshops on research skills and other incentives were not associated with any positive effects. Conclusions Pilot interventions show promise in supporting diversity in NIH-level research. Longitudinal modeling that considers time lags in career development in moving from project development to grants submissions can provide more direction for future diversity pilot interventions

    Genetic and Biochemical Evidence That Haploinsufficiency of the Nf1 Tumor Suppressor Gene Modulates Melanocyte and Mast Cell Fates in Vivo

    Get PDF
    Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types

    Comparison of Two Mathematical Models for Greenhouse Gas Emission from Membrane Bioreactors

    Get PDF
    In this study two mathematical models (Model I and Model II), able to predict the nitrous oxide (N2O) and carbon dioxide (CO2) emission from an University Cape Town (UCT) \u2013 membrane bioreactor (MBR) plant, have been compared. Model I considers the N2O production only during the denitrification. Model II takes into account the two ammonia-oxidizing bacteria (AOB) formation pathways for N2O. Both models were calibrated adopting real data. Results highlight that Model II had a better capability of reproducing the measured data especially in terms of N2O model outputs. Indeed, the average efficiency related to the N2O model outputs was equal to 0.3 and 0.38 for Model I and Model II respectively

    Association of chronic obstructive pulmonary disease with morbidity and mortality in patients with peripheral artery disease: insights from the EUCLID trial

    Get PDF
    Background: Patients with chronic obstructive pulmonary disease (COPD) are at increased risk of developing lower extremity peripheral artery disease (PAD) and suffering PAD-related morbidity and mortality. However, the effect and burden of COPD on patients with PAD is less well defined. This post hoc analysis from EUCLID aimed to analyze the risk of major adverse cardiovascular events (MACE) and major adverse limb events (MALE) in patients with PAD and concomitant COPD compared with those without COPD, and to describe the adverse events specific to patients with COPD. Methods: EUCLID randomized 13,885 patients with symptomatic PAD to monotherapy with either ticagrelor or clopidogrel for the prevention of MACE. In this analysis, MACE, MALE, mortality, and adverse events were compared between groups with and without COPD using unadjusted and adjusted Cox proportional hazards model. Results: Of the 13,883 patients with COPD status available at baseline, 11% (n=1538) had COPD. Patients with COPD had a higher risk of MACE (6.02 vs 4.29 events/100 patient-years; p< 0.001) due to a significantly higher risk of myocardial infarction (MI) (3.55 vs 1.85 events/100 patient-years; p< 0.001) when compared with patients without COPD. These risks persisted after adjustment (MACE: adjusted hazard ratio (aHR) 1.30, 95% confidence interval [CI] 1.11– 1.52; p< 0.001; MI: aHR 1.45, 95% CI 1.18– 1.77; p< 0.001). However, patients with COPD did not have an increased risk of MALE or major bleeding. Patients with COPD were more frequently hospitalized for dyspnea and pneumonia (2.66 vs 0.9 events/100 patient-years; aHR 2.77, 95% CI 2.12– 3.63; p< 0.001) and more frequently discontinued study drug prematurely (19.36 vs 12.54 events/100 patient-years; p< 0.001; aHR 1.34, 95% CI 1.22– 1.47; p< 0.001). Conclusion: In patients with comorbid PAD and COPD, the risks of MACE, respiratory-related adverse events, and premature study drug discontinuation were higher when compared with patients without COPD. Registration: ClinicalTrials.gov: NCT01732822

    Biopolitics meets Terrapolitics: Political Ontologies and Governance in Settler-Colonial Australia

    Get PDF
    Crises persist in Australian Indigenous affairs because current policy approaches do not address the intersection of Indigenous and European political worlds. This paper responds to this challenge by providing a heuristic device for delineating Settler and Indigenous Australian political ontologies and considering their interaction. It first evokes Settler and Aboriginal ontologies as respectively biopolitical (focused through life) and terrapolitical (focused through land). These ideal types help to identify important differences that inform current governance challenges. The paper discusses the entwinement of these traditions as a story of biopolitical dominance wherein Aboriginal people are governed as an “included-exclusion” within the Australian political community. Despite the overall pattern of dominance, this same entwinement offers possibilities for exchange between biopolitics and terrapolitics, and hence for breaking the recurrent crises of Indigenous affairs

    Application of adaptive design and decision making to a phase II trial of a phosphodiesterase inhibitor for the treatment of intermittent claudication

    Get PDF
    Background: Claudication secondary to peripheral artery disease (PAD) is associated with substantial functional impairment. Phosphodiesterase (PDE) inhibitors have been shown to increase walking performance in these patients. K-134 is a selective PDE 3 inhibitor being developed as a potential treatment for claudication. The use of K-134, as with other PDE 3 inhibitors, in patients with PAD raises important safety and tolerability concerns, including the induction of cardiac ischemia, tachycardia, and hypotension. We describe the design, oversight, and implementation of an adaptive, phase II, dose-finding trial evaluating K-134 for the treatment of stable, intermittent claudication. Methods: The study design was a double-blind, multi-dose (25 mg, 50 mg, and 100 mg of K-134), randomized trial with both placebo and active comparator arms conducted in the United States and Russia. The primary objective of the study was to compare the highest tolerable dose of K-134 versus placebo using peak walking time after 26 weeks of therapy as the primary outcome. Study visits with intensive safety assessments were included early in the study period to provide data for adaptive decision making. The trial used an adaptive, dose-finding strategy to efficiently identify the highest dose(s) most likely to be safe and well tolerated, based on the side effect profiles observed within the trial, so that less promising doses could be abandoned. Protocol specified criteria for safety and tolerability endpoints were used and modeled prior to the adaptive decision making. The maximum target sample size was 85 subjects in each of the retained treatment arms. Results: When 199 subjects had been randomized and 28-day data were available from 143, the Data Monitoring Committee (DMC) recommended termination of the lowest dose (25 mg) treatment arm. Safety evaluations performed during 14- and 28-day visits which included in-clinic dosing and assessments at peak drug concentrations provided core data for the DMC review. At the time of review, no subject in any of the five treatment arms (placebo, three K-134-containing arms, and cilostazol) had met pre-specified definitions for resting tachycardia or ischemic changes on exercise ECG. If, instead of dropping the 25-mg K-134 treatment arm, all arms had been continued to full enrollment, then approximately 43 additional research subjects would have been required to complete the trial. Conclusions: In this phase II, dose-finding trial of K-134 in the treatment of stable intermittent claudication, no concerning safety signals were seen at interim analysis, allowing the discontinuation of the lowest-dose-containing arm and the retention of the two highest-dose-containing arms. The adaptive design facilitated safe and efficient evaluation of K-134 in this high-risk cardiovascular population
    corecore