81 research outputs found
Discovery and identification of potential biomarkers of papillary thyroid carcinoma
<p>Abstract</p> <p>Background</p> <p>Thyroid carcinoma is the most common endocrine malignancy and a common cancer among the malignancies of head and neck. Noninvasive and convenient biomarkers for diagnosis of papillary thyroid carcinoma (PTC) as early as possible remain an urgent need. The aim of this study was to discover and identify potential protein biomarkers for PTC specifically.</p> <p>Methods</p> <p>Two hundred and twenty four (224) serum samples with 108 PTC and 116 controls were randomly divided into a training set and a blind testing set. Serum proteomic profiles were analyzed using SELDI-TOF-MS. Candidate biomarkers were purified by HPLC, identified by LC-MS/MS and validated using ProteinChip immunoassays.</p> <p>Results</p> <p>A total of 3 peaks (<it>m/z </it>with 9190, 6631 and 8697 Da) were screened out by support vector machine (SVM) to construct the classification model with high discriminatory power in the training set. The sensitivity and specificity of the model were 95.15% and 93.97% respectively in the blind testing set. The candidate biomarker with <it>m/z </it>of 9190 Da was found to be up-regulated in PTC patients, and was identified as haptoglobin alpha-1 chain. Another two candidate biomarkers (6631, 8697 Da) were found down-regulated in PTC and identified as apolipoprotein C-I and apolipoprotein C-III, respectively. In addition, the level of haptoglobin alpha-1 chain (9190 Da) progressively increased with the clinical stage I, II, III and IV, and the expression of apolipoprotein C-I and apolipoprotein C-III (6631, 8697 Da) gradually decreased in higher stages.</p> <p>Conclusion</p> <p>We have identified a set of biomarkers that could discriminate PTC from non-cancer controls. An efficient strategy, including SELDI-TOF-MS analysis, HPLC purification, MALDI-TOF-MS trace and LC-MS/MS identification, has been proved successful.</p
Transcriptomic Analysis of Resistant and Susceptible Bombyx mori
Purpose. To decipher transcriptomic changes and related genes with potential functions against Bombyx mori nucleopolyhedrovirus infection and to increase the understanding of the enhanced virus resistance of silkworm on the transcriptomic level. Methods. We assembled and annotated transcriptomes of the Qiufeng (susceptible to infection) and QiufengN (resistant to infection) strains and performed comparative analysis in order to decipher transcriptomic changes and related genes with potential functions against BmNPV infection. Results. A total of 78,408 SNPs were identified in the Qiufeng strain of silkworm and 56,786 SNPs were identified in QiufengN strain. Besides, novel AS events were found in these 2 strains. In addition, 1,728 DEGs were identified in the QiufengN strain compared with Qiufeng strain. These DEGs were involved in GO terms related to membrane, metabolism, binding and catalytic activity, cellular processes, and organismal systems. The highest levels of gene representation were found in oxidative phosphorylation, phagosome, TCA cycle, arginine and proline metabolism, and pyruvate metabolism. Additionally, COG analysis indicated that DEGs were involved in “amino acid transport and metabolism” and “carbohydrate transport and metabolism.” Conclusion. We identified a series of major pathological changes in silkworm following infection and several functions were related to the antiviral mechanisms of silkworm
The fibrinogen-to-albumin ratio is associated with intracranial atherosclerosis plaque enhancement on contrast-enhanced high-resolution magnetic resonance imaging
BackgroundContrast-enhanced high-resolution magnetic resonance imaging (CE-HR-MRI) is a useful imaging modality to assess vulnerable plaques in intracranial atherosclerotic stenosis (ICAS) patients. We studied the relationship between the fibrinogen-to-albumin ratio (FAR) and plaque enhancement in patients with ICAS.MethodsWe retrospectively enrolled consecutive ICAS patients who had undergone CE-HR-MRI. The degree of plaque enhancement on CE-HR-MRI was evaluated both qualitatively and quantitatively. Enrolled patients were classified into no enhancement, mild enhancement, and obvious enhancement groups. An independent association of the FAR with plaque enhancement was identified by multivariate logistic regression and receiver operating characteristic (ROC) curve analyses.ResultsOf the 69 enrolled patients, 40 (58%) were classified into the no/mild enhancement group, and 29 (42%) into the obvious enhancement group. The obvious enhancement group had a significantly higher FAR than the no/mild enhancement group (7.36 vs. 6.05, p = 0.001). After adjusting for potential confounders, the FAR was still significantly independently associated with obvious plaque enhancement in multiple regression analysis (odds ratio: 1.399, 95% confidence interval [CI]: 1.080–1.813; p = 0.011). ROC curve analysis revealed that FAR >6.37 predicted obvious plaque enhancement with 75.86% sensitivity and 67.50% specificity (area under the ROC curve = 0.726, 95% CI: 0.606–0.827, p < 0.001).ConclusionThe FAR can serve as an independent predictor of the degree of plaque enhancement on CE-HR-MRI in patients with ICAS. Also, as an inflammatory marker, the FAR has potential as a serological biomarker of intracranial atherosclerotic plaque vulnerability
NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice
NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice
Noise characteristic analysis and sound sources identification for rod–airfoil interaction using different subgrid-scale models
Four subgrid-scale models based on large eddy simulation (LES), such as Smagorinsky–Lilly (SL), dynamic Smagorinsky–Lilly (DSL), wall-adapting local eddy-viscosity (WALE), and dynamic kinetic-energy transport (KET) were used and couple Ffowcs Williams–Hawkings equation to accurately analyze and identify the characteristics and position of the sound sources of rod–airfoil interaction. The results of four models were compared with experimental data. It was found that the DSL model was the optimal subgrid-scale model for the study of the interaction noise considering the calculation accuracy. Therefore, the DSL model was selected for analyzing and identifying the characteristics and location of the interaction noise source. During the calculation, solid and permeable data surfaces were used for acoustic integral surfaces. The results show that the impact of the quadrupole source is negligible at a low Mach number, and the dipole noise coming from the pressure fluctuations is dominant. Meanwhile, the dipole noise from the airfoil is louder than that from the rod; the leading edge of about 30% chord length of airfoil the is the main sound source of interference effect. Above results can provide guidance for research of blade-vortex interaction noise
Laboratory Study on the Stability of Large-Size Graded Crushed Stone under Cyclic Rotating Axial Compression
In this paper, the stability of large-size graded crushed stone used for road base or cushioning under repeated load is investigated. Using an in-house developed device, large-size crushed stone mix was compacted and molded by the vibration and rotary compaction method. Cyclic rotating axial compression was applied, and the shakedown theory was used to study the cumulative deformation of the large-size crushed stone specimens. The effects of gradation parameters on the cumulative strain and stability behavior were analyzed, and the critical stability and failure loads were determined according to the shakedown theory. The test results indicate that there are three obvious instability behavior stages of large-size graded crushed stone under cyclic rotating axial compression: elastic stability, plastic creep, and incremental plastic failure. Large-size graded crushed stone has a higher critical stability load stiffness than conventional-size graded crushed stone. The critical shakedown load of the specimen is mainly affected by the skeleton structure performance, and the critical failure load by the properties of the crushed stone material. Increasing the content and compactness of large-size crushed stone in the specimen can improve the stiffness and stability performance, and to achieve improvements, the content of large-size crushed stone should be controlled between 22% and 26%. The critical shakedown load increases with the increase in the California bearing ratio (CBR) value, while, on the other hand, the CBR value has little relationship with the critical failure load
A Microfluidic Cell Co-Culture Chip for the Monitoring of Interactions between Macrophages and Fibroblasts
Macrophages and fibroblasts are two types of important cells in wound healing. The development of novel platforms for studying the interrelationship between these two cells is crucial for the exploration of wound-healing mechanisms and drug development. In this study, a microfluidic chip composed of two layers was designed for the co-culturing of these two cells. An air valve was employed to isolate fibroblasts to simulate the wound-healing microenvironment. The confluence rate of fibroblasts in the co-culture system with different macrophages was explored to reflect the role of different macrophages in wound healing. It was demonstrated that M2-type macrophages could promote the activation and migration of fibroblasts and it can be inferred that they could promote the wound-healing process. The proposed microfluidic co-culture system was designed for non-contact cell–cell interactions, which has potential significance for the study of cell–cell interactions in biological processes such as wound healing, tumor microenvironment, and embryonic development
- …