110 research outputs found

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Get PDF

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches

    Multiplicity of TeV muons in extensive air showers detected with IceTop and IceCube

    Get PDF
    We report on an analysis of the high-energy muon component in near-vertical extensive air showers detected by the surface array IceTop in coincidence with the in-ice array of the IceCube Neutrino Observatory. In the coincidence measurement, the predominantly electromagnetic signal measured by IceTop is used to estimate the cosmic-ray primary energy, and the energy loss of the muon bundle in the deep in-ice array is used to estimate the number of muons in the shower with energies above 500 GeV (“TeV muons”). The average multiplicity of these TeV muons is determined for cosmic-ray energies between 2.5 PeV and 100 PeV assuming three different hadronic interaction models: Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. For all models considered, the results are found to be in good agreement with the expectations from simulations. A tension exists, however, between the high-energy muon multiplicity and other observables; most importantly the density of GeV muons measured by IceTop using QGSJet-II.04 and EPOS-LHC

    Recent neutrino oscillation results with the IceCube experiment

    Get PDF
    The IceCube South Pole Neutrino Observatory is a Cherenkov detector instrumented in a cubic kilometer of ice at the South Pole. IceCube’s primary scientific goal is the detection of TeV neutrino emissions from astrophysical sources. At the lower center of the IceCube array, there is a subdetector called DeepCore, which has a denser configuration that makes it possible to lower the energy threshold of IceCube and observe GeV-scale neutrinos, opening the window to atmospheric neutrino oscillations studies. Advances in physics sensitivity have recently been achieved by employing Convolutional Neural Networks to reconstruct neutrino interactions in the DeepCore detector. In this contribution, the recent IceCube result from the atmospheric muon neutrino disappearance analysis using the CNN-reconstructed neutrino sample are presented and compared to the existing worldwide measurements

    Angular dependence of the atmospheric neutrino flux with IceCube data

    Get PDF
    IceCube Neutrino Observatory, the cubic kilometer detector embedded in ice of the geographic South Pole, is capable of detecting particles from several GeV up to PeV energies enabling precise neutrino spectrum measurement. The diffuse neutrino flux can be subdivided into three components: astrophysical, from extraterrestrial sources; conventional, from pion and kaon decays in atmospheric Cosmic Ray cascades; and the yet undetected prompt component from the decay of charmed hadrons. A particular focus of this work is to test the predicted angular dependence of the atmospheric neutrino flux using an unfolding method. Unfolding is a set of methods aimed at determining a value from related quantities in a model-independent way, eliminating the influence of several assumptions made in the process. In this work, we unfold the muon neutrino energy spectrum and employ a novel technique for rebinning the observable space to ensure sufficient event numbers within the low statistic region at the highest energies. We present the unfolded energy and zenith angle spectrum reconstructed from IceCube data and compare the result with model expectations and previous measurements

    Searching for high-energy neutrinos from shock-interaction powered supernovae with the IceCube Neutrino Observatory

    Get PDF

    Search for the Prompt Atmospheric Neutrino Flux in IceCube

    Get PDF
    For about a decade the IceCube Neutrino Observatory has been observing a high-energy diffuse astrophysical neutrino flux. At these energies, an important source of background are the prompt atmospheric neutrinos produced in decays of charmed mesons that are part of cosmic-ray-induced air showers. The production yield of charmed mesons in the very forward phase space of hadronic interactions, and thus the flux of prompt neutrinos, is not well known and has not yet been observed by IceCube. A measurement of the flux of prompt neutrinos will improve the modeling of hadronic interactions in cosmic-ray induced air showers at high energies. Additionally, in the context of astrophysical neutrino measurements, understanding this background flux will improve the measurement precision of the spectral shape in the future. In particular, the analysis of up-going muon neutrino-induced tracks in IceCube provides a large sample of atmospheric neutrinos which likely includes prompt neutrinos. However, the measurement of a subdominant prompt neutrino flux strongly depends on the hypothesis for the dominant astrophysical neutrino flux. This makes the estimation of upper limits on the prompt neutrino flux challenging. We discuss the extent of this model dependency on the astrophysical flux and propose a method to calculate robust upper limits. Furthermore, a possible dedicated search of the prompt neutrino flux using multiple IceCube detection channels is outlined
    corecore