41 research outputs found

    Transcription regulation of restriction-modification system Esp1396I

    Get PDF
    The convergently transcribed restriction (R) and methylase (M) genes of the Restrictionā€“Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I inĀ vivo and inĀ vitro. C-protein binding at the CR and M promoters was analyzed by DNA footprinting and a range of biophysical techniques. The distal and proximal C-protein binding sites at the CR promoter are responsible for activation and repression, respectively. In contrast, a C-protein dimer binds to a single site at the M-promoter to repress the gene, with an affinity much greater than for the CR promoter. Thus, during establishment of the system in a naĆÆve host, the activity of the M promoter is turned off early, preventing excessive synthesis of methylase. Mutational analysis of promoter binding sites reveals that the tetranucleotide inverted repeats long believed to be important for C-protein binding to DNA are less significant than previously thought. Instead, symmetry-related elements outside of these repeats appear to be critical for the interaction and are discussed in terms of the recent crystal structure of C.Esp139I bound to the CR promoter

    Transcription regulation of restriction-modification system Esp1396I

    Get PDF
    The convergently transcribed restriction (R) and methylase (M) genes of the Restrictionā€“Modification system Esp1396I are tightly regulated by a controller (C) protein that forms part of the CR operon. We have mapped the transcriptional start sites from each promoter and examined the regulatory role of C.Esp1396I inĀ vivo and inĀ vitro. C-protein binding at the CR and M promoters was analyzed by DNA footprinting and a range of biophysical techniques. The distal and proximal C-protein binding sites at the CR promoter are responsible for activation and repression, respectively. In contrast, a C-protein dimer binds to a single site at the M-promoter to repress the gene, with an affinity much greater than for the CR promoter. Thus, during establishment of the system in a naĆÆve host, the activity of the M promoter is turned off early, preventing excessive synthesis of methylase. Mutational analysis of promoter binding sites reveals that the tetranucleotide inverted repeats long believed to be important for C-protein binding to DNA are less significant than previously thought. Instead, symmetry-related elements outside of these repeats appear to be critical for the interaction and are discussed in terms of the recent crystal structure of C.Esp139I bound to the CR promoter

    Transcription regulation of the EcoRV restrictionā€“modification system

    Get PDF
    When a plasmid containing restrictionā€“modification (Rā€“M) genes enters a naĆÆve host, unmodified host DNA can be destroyed by restriction endonuclease. Therefore, expression of Rā€“M genes must be regulated to ensure that enough methyltransferase is produced and that host DNA is methylated before the endonuclease synthesis begins. In several Rā€“M systems, specialized Control (C) proteins coordinate expression of the R and the M genes. C proteins bind to DNA sequences called C-boxes and activate expression of their cognate R genes and inhibit the M gene expression, however the mechanisms remain undefined. Here, we studied the regulation of gene expression in the C protein-dependent EcoRV system. We map the divergent EcoRV M and R gene promoters and we define the site of C protein-binding that is sufficient for activation of the EcoRV R transcription

    Transcription regulation of the type II restriction-modification system AhdI

    Get PDF
    The Restriction-modification system AhdI contains two convergent transcription units, one with genes encoding methyltransferase subunits M and S and another with genes encoding the controller (C) protein and the restriction endonuclease (R). We show that AhdI transcription is controlled by two independent regulatory loops that are well-optimized to ensure successful establishment in a naĆÆve bacterial host. Transcription from the strong MS promoter is attenuated by methylation of an AhdI site overlapping the -10 element of the promoter. Transcription from the weak CR promoter is regulated by the C protein interaction with two DNA-binding sites. The interaction with the promoter-distal high-affinity site activates transcription, while interaction with the weaker promoter-proximal site represses it. Because of high levels of cooperativity, both C protein-binding sites are always occupied in the absence of RNA polymerase, raising a question how activated transcription is achieved. We develop a mathematical model that is in quantitative agreement with the experiment and indicates that RNA polymerase outcompetes C protein from the promoter-proximal-binding site. Such an unusual mechanism leads to a very inefficient activation of the R gene transcription, which presumably helps control the level of the endonuclease in the cell

    Transcription regulation of the type II restriction-modification system AhdI

    Get PDF
    The Restriction-modification system AhdI contains two convergent transcription units, one with genes encoding methyltransferase subunits M and S and another with genes encoding the controller (C) protein and the restriction endonuclease (R). We show that AhdI transcription is controlled by two independent regulatory loops that are well-optimized to ensure successful establishment in a naĆÆve bacterial host. Transcription from the strong MS promoter is attenuated by methylation of an AhdI site overlapping the -10 element of the promoter. Transcription from the weak CR promoter is regulated by the C protein interaction with two DNA-binding sites. The interaction with the promoter-distal high-affinity site activates transcription, while interaction with the weaker promoter-proximal site represses it. Because of high levels of cooperativity, both C protein-binding sites are always occupied in the absence of RNA polymerase, raising a question how activated transcription is achieved. We develop a mathematical model that is in quantitative agreement with the experiment and indicates that RNA polymerase outcompetes C protein from the promoter-proximal-binding site. Such an unusual mechanism leads to a very inefficient activation of the R gene transcription, which presumably helps control the level of the endonuclease in the cell

    Dual FRET assay for detecting receptor protein interaction with DNA

    Get PDF
    We present here a new assay that is based on the idea of the molecular beacon. This assay makes it possible to investigate two proteins interacting with DNA at two binding sites that are close to each other. The effectiveness of the test depends on the exclusive binding of three DNA fragments in the presence of two proteins, and the monitoring of the process depends upon observing the quenching of two independent fluorescence donors. As a model we used the components of the heterodimeric ecdysteroid receptor proteins ultraspiracle (Usp) and ecdysone receptor (EcR) from Drosophila melanogaster and a response element from the promoter of the hsp27 gene. The response element consists of two binding sites (half-sites) for the DNA binding domains (DBDs). We have shown that proteinā€“protein interactions mediate cooperative binding of the ecdysteroid receptor DBDs to a hsp27pal response element. The analysis of the microscopic dissociation constants obtained with the DMB led to the conclusion that there was increased affinity of UspDBD to the 5ā€² half-site in the presence of EcRDBD when the 3ā€² half-site was occupied, and increased affinity of EcRDBD to the 3ā€² half-site when the 5ā€² half-site was occupied

    Conformation of Fork Junction DNA in a Complex with Escherichia coli

    No full text
    corecore