121 research outputs found

    Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques

    Full text link
    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin anti-relaxation coatings, as well as the design and synthesis of new classes of coating materials.Comment: 12 pages, 12 figures. Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Chemical Physics and may be found at http://link.aip.org/link/?JCP/133/14470

    Subsecond Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-ray Scattering

    Get PDF
    The ability of Nafion® membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In-situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four-orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Also, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical-like domains is suggested. These differences in water-uptake kinetics and morphology provide a new perspective into Schroeder’s Paradox, which dictates different water contents for vaporand liquid-equilibrated ionomers at unit activity. The findings of this work provide critical insights into the fast kinetics of water absorption of Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions
    corecore