113 research outputs found

    Photoexcited electron dynamics in Kondo insulators and heavy fermions

    Full text link
    We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrier relaxation in a broad class of heavy electron systems (both metals and insulators) is governed by the presence of a (weakly temperature dependent) hybridization gap.Comment: accepted for publication in Physical Review Letter

    Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    Get PDF
    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe

    On the de Haas-van Alphen effect in inhomogeneous alloys

    Full text link
    We show that Landau level broadening in alloys occurs naturally as a consequence of random variations in the local quasiparticle density, without the need to consider a relaxation time. This approach predicts Lorentzian-broadened Landau levels similar to those derived by Dingle using the relaxation-time approximation. However, rather than being determined by a finite relaxation time τ\tau, the Landau-level widths instead depend directly on the rate at which the de Haas-van Alphen frequency changes with alloy composition. The results are in good agreement with recent data from three very different alloy systems.Comment: 5 pages, no figure

    Characterizing Australia's east coast cyclones (1950–2019)

    Get PDF
    East coast cyclones (ECCs) provide an essential reprieve from dry periods across eastern Australia. They also deliver flood‐producing rains with significant economic, social and environmental impacts. Assessing and comparing the influence of different types of cyclones is hindered by an incomplete understanding of ECC typology, given their widely variable spatial and temporal characteristics. This study employs a track‐clustering method (probabilistic curve‐aligned regression model) to identify key cyclonic pathways for ECCs from 1950 to 2019. Six spatially independent clusters were successfully distinguished and further sub‐classified (coastal, continental and tropical) based on their genesis location. The seasonality and long‐term variability, intensity (maximum Laplacian value ± two days) and event‐based rainfall were then evaluated for each cluster to quantify the impact of these storms on Australia. The highest quantity of land‐based rainfall per event is associated with the tropical cluster (Cluster 6), whereas widespread rainfall was also found to occur in the two continental lows (Cluster 4 and 5). Cyclone tracks orientated close to the coast (clusters 1, 2 and 3) were determined to be the least impactful in terms of rainfall and intensity, despite being the most common cyclone type. In terms of interannual variability, sea surface temperature anomalies suggest an increased cyclone frequency for clusters 1 (austral winter) and 4 (austral spring) during a central Pacific El Niño. Further, cyclone incidence during IOD‐negative conditions was more pronounced in winter for clusters 1, 2, 3 – and clusters 4 and 5 in spring. All cyclones also predominantly occurred in SAM‐positive conditions. However, winter ECCs for clusters 1 and 3 had a higher frequency in SAM‐negative. This new typology of ECCs via spatial clustering provides crucial insights into the systems that produce extreme rainfall across eastern Australia and should be used to inform future hazard management of cyclone events. This article is protected by copyright. All rights reserved

    Imaginary-time quantum many-body theory out of equilibrium I: Formal equivalence to Keldysh real-time theory and calculation of static properties

    Full text link
    We discuss the formal relationship between the real-time Keldysh and imaginary-time theory for nonequilibrium in quantum dot systems. The latter can be reformulated using the recently proposed Matsubara voltage approach. We establish general conditions for correct analytic continuation procedure on physical observables, and apply the technique to the calculation of static quantities in steady-state non-equilibrium for a quantum dot subject to a finite bias voltage and external magnetic field. Limitations of the Matsubara voltage approach are also pointed out.Comment: 24 pages, 10 figure

    Metal fire implications for advanced reactors. Part 1, literature review.

    Get PDF
    Public safety and acceptance is extremely important for the nuclear power renaissance to get started. The Advanced Burner Reactor and other potential designs utilize liquid sodium as a primary coolant which provides distinct challenges to the nuclear power industry. Fire is a dominant contributor to total nuclear plant risk events for current generation nuclear power plants. Utilizing past experience to develop suitable safety systems and procedures will minimize the chance of sodium leaks and the associated consequences in the next generation. An advanced understanding of metal fire behavior in regards to the new designs will benefit both science and industry. This report presents an extensive literature review that captures past experiences, new advanced reactor designs, and the current state-of-knowledge related to liquid sodium combustion behavior

    Metal fire implications for advanced reactors. Part 2, PIRT results.

    Get PDF
    This report documents the results of a Phenomena Identification and Ranking Table (PIRT) exercise performed at Sandia National Laboratories (SNL) as well as the experimental and modeling program that have been designed based on the PIRT results. A PIRT exercise is a structured and facilitated expert elicitation process. In this case, the expert panel was comprised of nine recognized fire science and aerosol experts. The objective of a PIRT exercise is to identify phenomena associated with the intended application and to then rank the current state of knowledge relative to each identified phenomenon. In this particular PIRT exercise the intended application was sodium fire modeling related to sodium-cooled advanced reactors. The panel was presented with two specific fire scenarios, each based on a hypothetical sodium leak in an Advanced Breeder Test Reactor (ABTR) design. For both scenarios the figure of merit was the ability to predict the thermal and aerosol insult to nearby equipment (i.e. heat exchangers and other electrical equipment). When identifying phenomena of interest, and in particular when ranking phenomena importance and the adequacy of existing modeling tools and data, the panel was asked to subjectively weigh these factors in the context of the specified figure of merit. Given each scenario, the panel identified all those related phenomena that are of potential interest to an assessment of the scenario using fire modeling tools to evaluate the figure of merit. Each phenomenon is then ranked relative to its importance in predicting the figure of merit. Each phenomenon is then further ranked for the existing state of knowledge with respect to the ability of existing modeling tools to predict that phenomena, the underlying base of data associated with the phenomena, and the potential for developing new data to support improvements to the existing modeling tools. For this PIRT two hypothetical sodium leak scenarios were evaluated for the ABTR design. The first scenario was a leak in the hot side of the intermediate heat transport system (IHTS) resulting in a sodium pool fire. The second scenario was a leak in the cold side of the IHTS resulting in a sodium spray fire

    Optical study of the electronic phase transition of strongly correlated YbInCu_4

    Full text link
    Infrared, visible and near-UV reflectivity measurements are used to obtain conductivity as a function of temperature and frequency in YbInCu_4, which exhibits an isostructural phase-transition into a mixed-valent phase below T_v=42 K. In addition to a gradual loss of spectral weight with decreasing temperature extending up to 1.5 eV, a sharp resonance appears at 0.25 eV in the mixed-valent phase. This feature can be described in terms of excitations into the Kondo (Abrikosov-Suhl) resonance, and, like the sudden reduction of resistivity, provides a direct reflection of the onset of coherence in this strongly correlated electron system.Comment: 4 pages, 3 figures (to appear in Phys. Rev. B

    Characterization and applications of a Crimean-Congo hemorrhagic fever virus nucleoprotein-specific Affimer: Inhibitory effects in viral replication and development of colorimetric diagnostic tests.

    Full text link
    peer reviewedCrimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is one of the most widespread medically important arboviruses, causing human infections that result in mortality rates of up to 60%. We describe the selection of a high-affinity small protein (Affimer-NP) that binds specifically to the nucleoprotein (NP) of CCHFV. We demonstrate the interference of Affimer-NP in the RNA-binding function of CCHFV NP using fluorescence anisotropy, and its inhibitory effects on CCHFV gene expression in mammalian cells using a mini-genome system. Solution of the crystallographic structure of the complex formed by these two molecules at 2.84 Å resolution revealed the structural basis for this interference, with the Affimer-NP binding site positioned at the critical NP oligomerization interface. Finally, we validate the in vitro application of Affimer-NP for the development of enzyme-linked immunosorbent and lateral flow assays, presenting the first published point-of-care format test able to detect recombinant CCHFV NP in spiked human and animal sera
    corecore