7,268 research outputs found
Designing a Green Roof for Ireland
A model is presented for the gravity-driven flow of rainwater descending through the soil layer of a green roof, treated as a porous medium on a at permeable surface representing an efficient drainage layer. A fully saturated zone is shown to occur. It is typically a thin layer, relative to the total soil thickness, and lies at the bottom of the soil layer. This provides a bottom boundary condition for the partially saturated upper zone. It is shown that after the onset of rainfall, well-defined fronts of water can descend through the soil layer. Also the rainwater flow is relatively quick compared with the moisture uptake by the roots of the plants in the roof. In a separate model the exchanges of water are described between the (smaller-scale) porous granules of soil, the roots and the rainwater in the inter-granule pores
The "Business-As-Usual" growth of global primary energy use and carbon dioxide emissions – historical trends and near-term forecasts
We analyse the global primary energy use and total CO2 emissions time series since 1850 and show that their relative growth rates appear to exhibit periodicity with a fundamental timescale of ~60 years and with significant harmonic behaviour. Quantifying the inertia inherent in these dynamics allows forecasting of future "business as usual" energy needs and their associated CO2 emissions. Our best estimates for 2020 are 800 EJ yr−1 for global energy use and 14 Gt yr−1 for global CO2 emissions, with both being above almost all other published forecasts. This suggests the energy and total CO2 emissions landscape in 2020 may be significantly more challenging than currently envisaged
- …