198 research outputs found

    Preconditioning the 2D Helmholtz equation with polarized traces

    Get PDF
    We present a domain decomposition solver for the 2D Helmholtz equation, with a special choice of integral transmission condition that involves polarizing the waves into oneway components. This refinement of the transmission condition is the key to combining local direct solves into an efficient iterative scheme, which can then be deployed in a highperformance computing environment. The method involves an expensive, but embarrassingly parallel precomputation of local Green's functions, and a fast online computation of layer potentials in partitioned low-rank form. The online part has sequential complexity that scales sublinearly with respect to the number of volume unknowns, even in the high-frequency regime. The favorable complexity scaling continues to hold in the context of low-order finite difference schemes for standard community models such as BP and Marmousi2, where convergence occurs in 5 to 10 GMRES iterations.TOTAL (Firm)United States. Air Force. Office of Scientific ResearchUnited States. Office of Naval ResearchNational Science Foundation (U.S.

    Efficient stochastic Hessian estimation for full waveform inversion

    Get PDF
    In this abstract we present a method that allows arbitrary elements of the approximate Hessian to be estimated simultaneously. Preliminary theoretical and numerical investigations suggest that the number of forward models required for this procedure does not increase with the number of shots. As the number of shots increases this means that the cost of estimating these approximate Hessian entries becomes negligible relative to the cost of calculating the gradient. The most obvious application would be to estimate the diagonal of the approximate hessian. This can then be used as a very inexpensive preconditioner for optimization procedures, such as the truncated Newton method

    A phase field method for tomographic reconstruction from limited data.

    Get PDF
    Classical tomographic reconstruction methods fail for problems in which there is extreme temporal and spatial sparsity in the measured data. Reconstruction of coronal mass ejections (CMEs), a space weather phenomenon with potential negative effects on the Earth, is one such problem. However, the topological complexity of CMEs renders recent limited data reconstruction methods inapplicable. We propose an energy function, based on a phase field level set framework, for the joint segmentation and tomographic reconstruction of CMEs from measurements acquired by coronagraphs, a type of solar telescope. Our phase field model deals easily with complex topologies, and is more robust than classical methods when the data are very sparse. We use a fast variational algorithm that combines the finite element method with a trust region variant of Newton’s method to minimize the energy. We compare the results obtained with our model to classical regularized tomography for synthetic CME-like images

    High-dimensional wave atoms and compression of seismic data sets

    Get PDF
    Wave atoms are a low-redundancy alternative to curvelets, suitable for high-dimensional seismic data processing. This abstract extends the wave atom orthobasis construction to 3D, 4D, and 5D Cartesian arrays, and parallelizes it in a sharedmemory environment. An implementation of the algorithm for NVIDIA CUDA capable graphics processing units (GPU) is also developed to accelerate computation for 2D and 3D data. The new transforms are benchmarked against the Fourier transform for compression of data generated from synthetic 2D and 3D acoustic models.TOTAL (Firm)National Science Foundation (U.S.)Alfred P. Sloan Foundatio

    A short note on a pipelined polarized-trace algorithm for 3D Helmholtz

    Get PDF
    We present a fast solver for the 3D high-frequency Helmholtz equation in heterogeneous, constant density, acoustic media. The solver is based on the method of polarized traces, coupled with distributed linear algebra libraries and pipelining to obtain a solver with online runtime O(max(1, R/n)N logN) where N = n[superscript 3] is the total number of degrees of freedom and R is the number of right-hand sides.TOTAL (Firm

    Time-stepping beyond CFL: A locally one-dimensional scheme for acoustic wave propagation

    Get PDF
    In this abstract, we present a case study in the application of a time-stepping method, unconstrained by the CFL condition, for computational acoustic wave propagation in the context of full waveform inversion. The numerical scheme is a locally one-dimensional (LOD) variant of alternating dimension implicit (ADI) method. The LOD method has a maximum time step that is restricted only by the Nyquist sampling rate. The advantage over traditional explicit time-stepping methods occurs in the presence of high contrast media, low frequencies, and steep, narrow perfectly matched layers (PML). The main technical point of the note, from a numerical analysis perspective, is that the LOD scheme is adapted to the presence of a PML. A complexity study is presented and an application to full waveform inversion is shown.TOTAL (Firm)Alfred P. Sloan FoundationNational Science Foundation (U.S.
    • …
    corecore