70 research outputs found
Breaking CPT by mixed non-commutativity
The mixed component of the non-commutative parameter \theta_{\mu M}, where
\mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional
CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu
5} with the four-dimensional axial vector current and with the CPT odd dim=6
operators starting from five-dimensional Yukawa and U(1) theories. The
resulting bounds from clock comparison experiments place a stringent constraint
on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold
projection and/or localization of fermions on a 3-brane lead to CPT-conserving
physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur
A Composite Little Higgs Model
We describe a natural UV complete theory with a composite little Higgs. Below
a TeV we have the minimal Standard Model with a light Higgs, and an extra
neutral scalar. At the TeV scale there are additional scalars, gauge bosons,
and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce
the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass
squared parameter, without finetuning, occurs due to a softly broken shift
symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale
the theory has new strongly coupled interactions. A perturbatively
renormalizable UV completion, with softly broken supersymmetry at 10 TeV is
explicitly worked out. Our theory contains new particles which are odd under an
exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is
likely to be a feature of many theories of new TeV scale physics. The lightest
parity odd particle, or "LPOP", is most likely a neutral fermion, and may make
a good dark matter candidate, with similar experimental signatures to the
neutralino of the MSSM. We give a general effective field theory analysis of
the calculation of corrections to precision electroweak observables.Comment: 28 page
Higgsless Electroweak Symmetry Breaking in Warped Backgrounds: Constraints and Signatures
We examine the phenomenology of a warped 5-dimensional model based on
SU(2) SU(2) U(1) model which implements
electroweak symmetry breaking through boundary conditions, without the presence
of a Higgs boson. We use precision electroweak data to constrain the general
parameter space of this model. Our analysis includes independent and
gauge couplings, radiatively induced UV boundary gauge kinetic terms, and all
higher order corrections from the curvature of the 5-d space. We show that this
setup can be brought into good agreement with the precision electroweak data
for typical values of the parameters. However, we find that the entire range of
model parameters leads to violation of perturbative unitarity in gauge boson
scattering and hence this model is not a reliable perturbative framework.
Assuming that unitarity can be restored in a modified version of this scenario,
we consider the collider signatures. It is found that new spin-1 states will be
observed at the LHC and measurement of their properties would identify this
model. However, the spin-2 graviton Kaluza-Klein resonances, which are a
hallmark of the Randall-Sundrum model, are too weakly coupled to be detected.Comment: More detailed analysis, added references, 43 pages, 15 figures, LaTe
On search for new Higgs physics in CDF at the Tevatron
We discuss the Higgs boson mass sum rules in the Minimal Supersymmetric
Standard Model in order to estimate the upper limits on the masses of stop
quarks as well as the lower bounds on the masses of the scalar Higgs boson
state. The bounds on the scale of quark-lepton compositeness derived from the
CDF Collaboration (Fermilab Tevatron) data and applied to new extra gauge boson
search is taken into account. These extra gauge bosons are considered in the
framework of the extended SU(2)_h \times SU(2)_l model. In addition, we discuss
the physics of rare decays of the MSSM Higgs bosons in both CP-even and CP-odd
sectors and also some extra gauge bosons.Comment: 24 pages, LaTeX, 8 figure
A "Littlest Higgs" Model with Custodial SU(2) Symmetry
In this note, a ``littlest higgs'' model is presented which has an
approximate custodial SU(2) symmetry. The model is based on the coset space
. The light pseudo-goldstone bosons of the theory
include a {\it single} higgs doublet below a TeV and a set of three
triplets and an electroweak singlet in the TeV range. All of these scalars
obtain approximately custodial SU(2) preserving vacuum expectation values. This
model addresses a defect in the earlier moose
model, with the only extra complication being an extended top sector. Some of
the precision electroweak observables are computed and do not deviate
appreciably from Standard Model predictions. In an S-T oblique analysis, the
dominant non-Standard Model contributions are the extended top sector and higgs
doublet contributions. In conclusion, a wide range of higgs masses is allowed
in a large region of parameter space consistent with naturalness, where large
higgs masses requires some mild custodial SU(2) violation from the extended top
sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra
discussion on size of T contributions, as well as some other minor
clarifications. Version to appear in JHE
What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs
We study precision electroweak constraints on the close cousin of the
Littlest Higgs, the SU(6)/Sp(6) model. We identify a near-oblique limit in
which the heavy W' and B' decouple from the light fermions, and then calculate
oblique corrections, including one-loop contributions from the extended top
sector and the two Higgs doublets. We find regions of parameter space that give
acceptably small precision electroweak corrections and only mild fine tuning in
the Higgs potential, and also find that the mass of the lightest Higgs boson is
relatively unconstrained by precision electroweak data. The fermions from the
extended top sector can be as light as 1 TeV, and the W' can be as light as 1.8
TeV. We include an independent breaking scale for the B', which can still have
a mass as low as a few hundred GeV.Comment: 52 pages, 16 figure
Nonexotic Neutral Gauge Bosons
We study theoretical and experimental constraints on electroweak theories
including a new color-singlet and electrically-neutral gauge boson. We first
note that the electric charges of the observed fermions imply that any such Z'
boson may be described by a gauge theory in which the Abelian gauge groups are
the usual hypercharge along with another U(1) component in a kinetic-diagonal
basis. Assuming that the observed quarks and leptons have
generation-independent U(1) charges, and that no new fermions couple to the
standard model gauge bosons, we find that their U(1) charges form a
two-parameter family consistent with anomaly cancellation and viable fermion
masses, provided there are at least three right-handed neutrinos. We then
derive bounds on the Z' mass and couplings imposed by direct production and
Z-pole measurements. For generic charge assignments and a gauge coupling of
electromagnetic strength, the strongest lower bound on the Z' mass comes from
Z-pole measurements, and is of order 1 TeV. If the new U(1) charges are
proportional to B-L, however, there is no tree-level mixing between the Z and
Z', and the best bounds come from the absence of direct production at LEPII and
the Tevatron. If the U(1) gauge coupling is one or two orders of magnitude
below the electromagnetic one, these bounds are satisfied for most values of
the Z' mass.Comment: 26 pages, 2 figures. A comparison with the LEP bounds on sneutrino
resonances is include
The Little Higgs from a Simple Group
We present a model of electroweak symmetry breaking in which the Higgs boson
is a pseudo-Nambu-Goldstone boson. By embedding the standard model SU(2) x U(1)
into an SU(4) x U(1) gauge group, one-loop quadratic divergences to the Higgs
mass from gauge and top loops are canceled automatically with the minimal
particle content. The potential contains a Higgs quartic coupling which does
not introduce one-loop quadratic divergences. Our theory is weakly coupled at
the electroweak scale, it has new weakly coupled particles at the TeV scale and
a cutoff above 10 TeV, all without fine tuning. We discuss the spectrum of the
model and estimate the constraints from electroweak precision measurements.Comment: 29 pages, referencing error corrected after death threats, dude
remove
Fermions on an Interval: Quark and Lepton Masses without a Higgs
We consider fermions on an extra dimensional interval. We find the boundary
conditions at the ends of the interval that are consistent with the variational
principle, and explain which ones arise in various physical circumstances. We
apply these results to higgsless models of electroweak symmetry breaking, where
electroweak symmetry is not broken by a scalar vacuum expectation value, but
rather by the boundary conditions of the gauge fields. We show that it is
possible to find a set of boundary conditions for bulk fermions that would give
a realistic fermion mass spectrum without the presence of a Higgs scalar, and
present some sample fermion mass spectra for the standard model quarks and
leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure
Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC
Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by
a number of quantum gravity approaches which all indicate that the spacetime
dimensions get reduced at high energies. In this work, we formulate an
effective theory of electroweak interactions based upon the standard model,
incorporating the spontaneous reduction of space-dimensions at TeV scale. The
electroweak gauge symmetry is nonlinearly realized with or without a Higgs
boson. We demonstrate that the SDR ensures good high energy behavior and
predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV,
the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a
light Higgs boson can have induced anomalous gauge couplings from the TeV-scale
SDR. We find that the corresponding WW scattering cross sections become unitary
at TeV scale, but exhibit different behaviors from that of the 4d standard
model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM
Higgs boson(125GeV) via WW scattering; minor clarifications added; references
added; a concise companion is given in the short PLB letter arXiv:1301.457
- …