4 research outputs found
Micro-connectomics: probing the organization of neuronal networks at the cellular scale.
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.This work was supported by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Nature Publishing Group
The "Woundosome" Concept and Its Impact on Procedural Outcomes in Patients With Chronic Limb-Threatening Ischemia
This editorial assembles endovascular specialists from diverse clinical backgrounds and nationalities with a global call to address key challenges to enhance revascularization in chronic limb-threatening ischemia (CLTI) patients.- Dedicated below-the-ankle (BTA) angiography and revascularization is underutilized in ischemic foot treatment. Existing guidelines do not address comprehensive BTA vessel analysis. CLTI trials also often lack data on in-line arterial flow to the ischemic lesion and BTA vessel evaluation, hindering outcome assessment.- Dedicated multi-planar angiographic evaluation of the distal microcirculation is key: Direct arterial flow or good-quality collaterals are crucial in influencing wound healing and need to be assessed diligently to the level of the distal ischemic wound territory, termed “woundosome.”- An important primary emphasis of future trials should be on validating technologies and strategies for assessing tissue perfusion before, during, and after revascularization undertaken to heal tissue loss in CLTI patients. This will allow determination of a potentially significant delta in tissue perfusion prior to and following intervention at the “woundosome” level. Once changes in arterial perfusion have been identified as positively correlated to wound healing, these could serve as a much-needed novel primary technical outcome measure for patients with tissue loss undergoing surgical, hybrid, or endovascular revascularization