284 research outputs found

    Bench-to-bedside review: Hypercapnic acidosis in lung injury - from 'permissive' to 'therapeutic'

    Get PDF
    Modern ventilation strategies for patients with acute lung injury and acute respiratory distress syndrome frequently result in hypercapnic acidosis (HCA), which is regarded as an acceptable side effect ('permissive hypercapnia'). Multiple experimental studies have demonstrated advantageous effects of HCA in several lung injury models. To date, however, human trials studying the effect of carbon dioxide per se on outcome in patients with lung injury have not been performed. While significant concerns regarding HCA remain, in particular the possible unfavorable effects on bacterial killing and the inhibition of pulmonary epithelial wound repair, the potential for HCA in attenuating lung injury is promising. The underlying mechanisms by which HCA exerts its protective effects are complex, but dampening of the inflammatory response seems to play a pivotal role. After briefly summarizing the physiological effects of HCA, a critical analysis of the available evidence on the potential beneficial effects of therapeutic HCA from in vitro, ex vivo and in vivo lung injury models and from human studies will be reviewed. In addition, the potential concerns in the clinical setting will be outlined

    Oxidative and nitrosative stress in the diaphragm of patients with COPD

    Get PDF
    COPD is associated with an increased load on the diaphragm. Since chronic muscle loading results in changes in antioxidant capacity and formation of reactive oxygen and reactive nitrogen species, we hypothesized that COPD has a similar effect on the diaphragm, which is related to the severity of COPD. Catalase activity was determined spectrophotometrically. Levels of 4-hydroxy-2-nonenal (HNE)-protein adducts and 3-nitrotyrosine (NT) formation were measured using western blotting. Levels of malondialdehyde (MDA) were assessed by high-performance liquid chromatography. We found that catalase activity was ~89% higher in the diaphragm of severe COPD patients (FEV1 37 ± 5% predicted) compared with non-COPD patients. MDA levels, a marker for lipid peroxidation, were significantly lower in the diaphragm of COPD patients compared with non-COPD patients, whereas the level of HNE-protein adducts was equal in both groups. NT formation was not different between groups. However, increasing hyperinflation and NT formation were inversely correlated. These results indicate that in COPD the diaphragm adapts to a higher work load by increasing catalase activity, resulting in a reduction in oxidative damage to lipids and tyrosine nitration of proteins

    The role of calpains in ventilator-induced diaphragm atrophy

    Get PDF
    Contains fulltext : 178017.pdf (publisher's version ) (Open Access)BACKGROUND: Controlled mechanical ventilation (CMV) is associated with diaphragm dysfunction. Dysfunction results from muscle atrophy and injury of diaphragm muscle fibers. Enhanced proteolysis and reduced protein synthesis play an important role in the development of atrophy. The current study is to evaluate the effects of the calpains inhibitor calpeptin on the development of diaphragm atrophy and activation of key enzymes of the ubiquitin-proteasome pathway in rats under CMV. METHODS: Three groups of rats were studied: control animals (CON, n = 8), rats subjected to 24 h of MV (CMV, n = 8), and rats subjected to 24 h of MV after administration of the calpain inhibitor calpeptin (CMVC, n = 8). The diaphragm was analyzed for calpain activity, myosin heavy chain (MHC) content, and cross-sectional area (CSA) of diaphragmatic muscle fibers as a marker for muscle atrophy. In addition, key enzymes of the ubiquitin-proteasome pathway (MAFbx and MuRF1) were also studied. RESULTS: CMV resulted in loss of both MHCfast and MHCslow. Furthermore, the CSA of diaphragmatic muscle fibers was significantly decreased after 24 h of CMV. However, calpain inhibitor calpeptin prevented loss of MHC and CSA after CMV. In addition, calpeptin prevented the increase in protein expression of calpain1 and calpain2 and reduced calpain activity as indicated by reduced generation of the calpain cleavage product alphaII-spectrin in the diaphragm. CMV-induced upregulation of both MAFbx and MuRF1 protein levels was attenuated by treatment with calpeptin. CONCLUSIONS: The calpain inhibitor calpeptin prevents MV-induced muscle atrophy. In addition, calpeptin attenuated the expression of key proteolytic enzymes known to be involved in ventilator-induced diaphragm atrophy, including MAFbx and MuRF1

    No association between thickening fraction of the diaphragm and extubation success in ventilated children

    Get PDF
    Introduction: In mechanically ventilated adults, thickening fraction of diaphragm (dTF) measured by ultrasound is used to predict extubation success. Whether dTF can also predict extubation success in children is unclear. Aim: To investigate the association between dTF and extubation success in children. Second, to assess diaphragm thickness during ventilation and the correlation between dTF, diaphragm thickness (Tdi), age and body surface. Method: Prospective observational cohort study in children aged 0–18 years old with expected invasive ventilation for &gt;48 h. Ultrasound was performed on day 1 after intubation (baseline), day 4, day 7, day 10, at pre-extubation, and within 24 h after extubation. Primary outcome was the association between dTF pre-extubation and extubation success. Secondary outcome measures were Tdi end-inspiratory and Tdi end-expiratory and atrophy defined as &lt;10% decrease of Tdi end-expiratory versus baseline at pre-extubation. Correlations were calculated with Spearman correlation coefficients. Inter-rater reliability was calculated with intraclass correlation (ICC). Results: Fifty-three patients, with median age 3.0 months (IQR 0.1–66.0) and median duration of invasive ventilation of 114.0 h (IQR 55.5–193.5), were enrolled. Median dTF before extubation with Pressure Support 10 above 5 cmH2O was 15.2% (IQR 9.7–19.3). Extubation failure occurred in six children, three of whom were re-intubated and three then received non-invasive ventilation. There was no significant association between dTF and extubation success; OR 0.33 (95% CI; 0.06–1.86). Diaphragmatic atrophy was observed in 17/53 cases, in three of extubation failure occurred. Children in the extubation failure group were younger: 2.0 months (IQR 0.81–183.0) vs. 3.0 months (IQR 0.10–48.0); p = 0.045. At baseline, pre-extubation and post-extubation there was no significant correlation between age and BSA on the one hand and dTF, Tdi- insp and Tdi-exp on the other hand. The ICC representing the level of inter-rater reliability between the two examiners performing the ultrasounds was 0.994 (95% CI 0.970–0.999). The ICC of the inter-rater reliability between the raters in 36 paired assessments was 0.983 (95% CI 0.974–0.990). Conclusion: There was no significant association between thickening fraction of the diaphragm and extubation success in ventilated children.</p

    Cyclophosphamide for interstitial lung disease-associated acute respiratory failure:mortality, clinical response and radiological characteristics

    Get PDF
    BACKGROUND: Treatment for interstitial lung disease (ILD) patients with acute respiratory failure (ARF) is challenging, and literature to guide such treatment is scarce. The reported in-hospital mortality rates of ILD patients with ARF are high (62–66%). Cyclophosphamide is considered a second-line treatment in steroid-refractory ILD-associated ARF. The first aim of this study was to evaluate the in-hospital mortality in patients with ILD-associated ARF treated with cyclophosphamide. The second aim was to compare computed tomographic (CT) patterns and physiological and ventilator parameters between survivors and non-survivors. METHODS: Retrospective analysis of patients with ILD-associated ARF treated with cyclophosphamide between February 2016 and October 2017. Patients were categorized into three subgroups: connective tissue disease (CTD)-associated ILD, other ILD or vasculitis. In-hospital mortality was evaluated in the whole cohort and in these subgroups. Clinical response was determined using physiological and ventilator parameters: Sequential Organ Failure Assessment Score (SOFA), PaO2/FiO2 (P/F) ratio and dynamic compliance (Cdyn) before and after cyclophosphamide treatment. The following CT features were quantified: ground-glass opacification (GGO) proportion, reticulation proportion, overall extent of parenchymal disease and fibrosis coarseness score. RESULTS: Fifteen patients were included. The overall in-hospital mortality rate was 40%. In-hospital mortality rates for CTD-associated ILD, other ILD and vasculitis were 20, 57, and 33%, respectively. The GGO proportion (71% vs 45%) was higher in non-survivors. There were no significant differences in the SOFA score, P/F ratio or Cdyn between survivors and non-survivors. However, in survivors the P/F ratio increased from 129 to 220 mmHg and Cdyn from 75 to 92 mL/cmH2O 3 days after cyclophosphamide treatment. In non-survivors the P/F ratio hardly changed (113–114 mmHg) and Cdyn even decreased (27–20 mL/cmH2O). CONCLUSION: In this study, we found a mortality rate of 40% in patients treated with cyclophosphamide for ILD-associated ARF. Connective tissue disease-associated ILD and vasculitis were associated with a lower risk of death. In non-survivors, the CT GGO proportion was significantly higher. The P/F ratio and Cdyn in survivors increased after 3 days of cyclophosphamide treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12890-021-01615-2

    Speckle tracking echography allows sonographic assessment of diaphragmatic loading

    Get PDF
    Introduction: Assessment of diaphragm function should ideally be assessed using magnetic twitch pressure or esophageal and gastric balloons. Conventional sonographic techniques as thickness and fractional thickening (FT), only provide limited insight in diaphragm function. Speckle tracking echocardiography allows reliable quantification of muscle function by tracking of grey patterns and their motion; strain as parameter of muscle deformation and strain rate as deformation velocity. Aim: To investigate whether speckle tracking can quantify loading of the diaphragm, superior to FT. Methods: 13 healthy volunteers underwent an inspiratory loading protocol with recording of transdiaphragmatic pressure (Pdi) and diaphragm electromyography (EMGdi). Inspiratory loading of 0 to 30% of maximal inspiratory pressure was applied in random order for 5 minutes per applied load. Diaphragmatic sonography was performed using a 2-4 MHz linear phased array transducer positioned at the right-lateral thoracic wall in the anterior axillary line longitudinal to the body axis. Ultrasound recordings of the diaphragm were made at the marked location during 10 seconds. Results: Increased inspiratory loading increased Pdi and EMGdi. Sonographic markers of contractility increased with incremental loading. Pdi correlated with strain (r=0.75; p=0.000) and strain rate (r=0.77; p=0.000). Contrarily, FT was not correlated with Pdi. Conclusion: Speckle tracking of the diaphragm can detect changes in diaphragmatic loading up to 30% of maximal inspiratory pressure. It might be a valuable tool to detect changes in loading in specific patient categories, including patients with acute respiratory failure and ventilated ICU patients
    corecore