5 research outputs found

    Human immortalized chondrocytes carrying heterozygous FGFR3 mutations: An in vitro model to study chondrodysplasias

    Get PDF
    AbstractAchondroplasia and thanatophoric dysplasia are human chondrodysplasias caused by mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. We have developed an immortalized human chondrocyte culture model to study the regulation of chondrocyte functions. One control and eight mutant chondrocytic lines expressing different FGFR3 heterozygous mutations were obtained. FGFR3 signaling pathways were modified in the mutant lines as revealed by the constitutive activation of the STAT pathway and an increased level of P21WAF1/CIP1 protein. This model will be useful for the study of FGFR3 function in cartilage studies and future therapeutic approaches in chondrodysplasias

    Mutation screening in patients with syndromic craniosynostoses indicates that a limited number of recurrent FGFR2 mutations accounts for severe forms of Pfeiffer syndrome

    Get PDF
    International audienceCrouzon Syndrome (CS), Pfeiffer syndrome (PS) and the phenotypically related Jackson-Weiss (JW) variant are three craniosynostotic conditions caused by heterozygous mutations in Fibroblast Growth Factor Receptor (FGFR) genes. Screening a large cohort of 84 patients with clinical features of CS, PS or JW by direct sequencing of genomic DNA, enabled FGFR1, 2 or 3 mutation detection in 79 cases. Mutations preferentially occurred in exons 8 and 10 of FGFR2 encoding the third Ig loop of the receptor. Among the 74 FGFR2 mutations that we identified, four were novel including three missense substitutions causing CS and a 2 bp deletion creating a premature stop codon and producing JW phenotype. Five FGFR2 mutations were found in one of the two tyrosine kinase subdomains and one in the Ig I loop. Interestingly, two FGFR2 mutations creating cysteine residues (W290C and Y340C) caused severe forms of PS while conversion of the same residues into another amino-acid (W290G/R, Y340H) resulted in Crouzon phenotype exclusively. Our data provide conclusive evidence that the mutational spectrum of FGFR2 mutations in CS and PS is wider than originally thought. Genotype-phenotype analyses based on our cohort and previous studies further indicate that in spite of some overlap, PS and CS are preferentially accounted for by two distinct sets of FGFR2 mutations. A limited number of recurrent amino-acid changes (W290C, Y340C, C342R and S351C) is commonly associated with the most severe Pfeiffer phenotypes of poor prognosis

    Thanatophoric dysplasia caused by double missense FGFR3 mutations

    No full text
    Thanatophoric dysplasia is a lethal chondrodysplasia caused by heterozygous fibroblast growth factor receptor 3 (FGFR3) missense mutations. Mutations have been identified in several domains of the receptor. The most frequent mutations (p.R248C, p.S249C, p.Y373C) create a cysteine residue within the extracellular domain, whereas the others eliminate the termination codon (p.X807R, p.X807C, p.X807G, p.X807S, p.X807W). Here, we report a unique patient with thanatophoric dysplasia and a double de novo FGFR3 mutation, located on the same allele, (c.[1620C>A;1454A>G]), which corresponds to p.[N540K;Q485R]. The p.N540K mutation is associated with 60% of patients with hypochondroplasia and the p.Q485R mutation is a novel mutation located in a highly conserved domain of FGFRs. Evidence for the structural impact of the two concurrent missense mutations was achieved using protein alignments and three-dimensional structural prediction, in agreement with our modeling of the FGFR3 structure. In this patient with thanatophoric dysplasia, we conclude that the presence of the double FGFR3 missense mutation on the same allele alters the receptor structure, holding the receptor in its fully activated state, thus leading to lethal chondrodysplasia

    A novel automated strategy for screening cryptic telomeric rearrangements in children with idiopathic mental retardation

    No full text
    International audienceCryptic unbalanced subtelomeric rearrangements are known to cause a significant proportion of idiopathic mental retardation in childhood. Because of the limited sensitivity of routine analyses, the cytogenetic detection of such rearrangements requires molecular techniques, namely FISH and comparative genomic hybridisation (CGH). An alternative approach consists in using genetic markers to detect segmental aneusomy. Here, we describe a new strategy based upon automated fluorescent genotyping to search for non mendelian segregation of telomeric microsatellites. A total of 29 individuals belonging to 24 unrelated families were screened and three abnormal patterns of segregation were detected (two rearrangements and one parental disomy). This study gives strong support to the view that cryptic telomeric rearrangements significantly contribute to idiopathic mental retardation and demonstrates that fluorescent genotyping is a very sensitive and cost-effective method to detect deletions, duplications and uniparental disomies
    corecore