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Abstract Achondroplasia and thanatophoric dysplasia are hu-
man chondrodysplasias caused by mutations in the fibroblast
growth factor receptor 3 (FGFR3) gene. We have developed an
immortalized human chondrocyte culture model to study the reg-
ulation of chondrocyte functions. One control and eight mutant
chondrocytic lines expressing different FGFR3 heterozygous
mutations were obtained. FGFR3 signaling pathways were mod-
ified in the mutant lines as revealed by the constitutive activation
of the STAT pathway and an increased level of P21WAF1/CIP1

protein. This model will be useful for the study of FGFR3 func-
tion in cartilage studies and future therapeutic approaches in
chondrodysplasias.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Fibroblast growth factor receptor 3 (FGFR3) is a tyrosine

kinase receptor that mediates the action of various Fibroblast

Growth Factors (FGF). Activating FGFR3 mutations in hu-

mans cause a broad clinical spectrum of chondrodysplasias

ranging from hypochondrondoplasia (HCH) and achondro-

plasia (ACH), to lethal thanatophoric dysplasia (TD) [1–6].

Mutations in FGFR3 can result in the constitutive activation

of the receptor or the stabilization of the dimerized monomers

[7,8]. We have previously shown that the proliferating and

hypertrophic chondrocyte zones of the human TD growth

plate are markedly reduced and disorganized, suggesting that

both chondrocyte proliferation and differentiation are altered

by FGFR3 mutations [9,10]. Chondrocyte proliferation and

differentiation are known to require activation of various sig-

naling proteins, including STATs, MAPK ERK1/2, phospho-

lipase Cc, protein kinase C and AKT [11–14]. Mutations in

FGFR3 have been shown to trigger the constitutive activation

of the STAT(s) signaling pathway and increased expression of

the cell-cycle inhibitor p21WAF1/CIP1 in mouse and human car-

tilage models [10,15]. The MAP kinase pathway is also consti-

tutively activated by FGFR3 mutations [15].
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Chondrocytes derived from human growth plate are difficult

to cultivate as they rapidly loose their round shape and de-dif-

ferentiate into a fibroblast-like cell type when grown on plastic

thus forming a monolayer of flattened cells.

In order to overcome the de-differentiation of primary chon-

drocytes we have developed a human chondrocyte culture

model for human chondrodysplasia studies. Primary chondro-

cytes from normal and chondrodysplasia fetuses were immor-

talized by transfection using plasmid DNA, expressing origin

defective simian virus 40 (SV40) containing large T antigen.

After several rounds of passaging in culture, the immortal-

ized chondrocytes still retain chondrocytic morphology and

proliferate in monolayer culture. These human chondrocytic

lines carry and express wild-type and mutant FGFR3 and

can consequently serve to analyze FGFR3 signaling pathways

in human chondrodysplasias.
2. Materials and methods

2.1. Cartilage samples and cell culture
Human chondrocytes were isolated from fetal growth plate cartilage

derived from medically aborted control (1 fetus), ACH (1 fetus) and
TD (7 fetuses) following the informed consent of the parents. Pregnan-
cies were legally terminated after ultrasonographic and X-ray detection
of chondrodysplasia. Chondrocytes were isolated as described previ-
ously [9], plated at 2 · 106/10 cm dish, and cultured during four days
prior to transfection in Dulbecco’s modified Eagle’s medium (Invitro-
gen) supplemented with 10% fetal calf serum (FCS, Invitrogen) in 5%
CO2 at 37 �C.

Immortalized human chondrocytes were obtained by transfection
with Simian virus 40 largeT-antigen (SV40-TAg) using Fugene 6
(Roche) and the neomycin-resistance selection marker (neoR). The cells
were selected using fresh medium containing G418 (500 lg/ml geneti-
cin; Invitrogen). Selection in G418 was maintained for 4 weeks, and
after an initial 80% reduction in cell density, G418-resistant cells
repopulated the dishes. The transfected cells were subcloned and se-
lected according to chondrocytic morphology.
2.2. DNA sequencing and mutation analyses
The screening of FGFR3 mutations in immortalized human chon-

drocytes was performed by direct sequencing of amplification products
as described previously [16]. All the FGFR3 coding regions from con-
trol and mutant strains were sequenced to confirm the absence of addi-
tional polymorphisms or mutations.

2.3. Reverse transcriptase PCR
Extraction of primary and immortalized chondrocyte RNA was per-

formed using the RNeasy extraction kit (Qiagen). Total RNA (0.2 lg)
was reverse transcribed using an RNA PCR Core kit (Applied-Biosys-
tems). Following an initial denaturation at 95 �C for 2 min., the cDNA
was amplified in the Gen AmpPCR system 9600 (Perkin–Elmer) using
blished by Elsevier B.V. All rights reserved.
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Table 1
FGFR3 mutations identified in human immortalized and primary chondrocytes

No. Cell line Mutation Age of pregnancy (weeks) Phenotype FGFR3 domain

Immortalized chondrocytes
1 GU-15 – 26 Control –
2 BL-2.2 G380R 32 ACH TM domain
3 TU-4.3 R248C 19 TDI EC domain
4 BA-2.7 S249C 21 TDI EC domain
5 DR-2.1.10 G370C 24 TDI EC domain
6 BD-1.11 Y373C 26 TDI EC domain
7 MA-1.8.4 Y373C 15 TDI EC domain
8 GE-1.2 K650E 14 TDII TKII domain
9 BR-1.13 X807S 19 TDI Stop position
Primary chondrocytes
10 GE K650E 14 TDII TKII domain
11 BE R248C 18 TDI EC domain
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35 cycles of 15 s at 95 �C, 30 s at 60 �C, 7 min at 72 �C, for GAPDH,
Biglycan, Decorin, Osteocalcin, Osteopontin, type II Collagen, Aggre-
can, type I Collagen, Matrix Metalloprotein 3 (MMP-3) [17] and
SOX9 primers [18]. The mRNAs isolated from primary human chon-
drocytes served as a positive control.

2.4. Immunoprecipitation and immunoblotting
Immortalized chondrocytes were lysed in RIPA buffer (50 mM Tris–

HCl pH 7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% Nonidet
P-40, supplemented with protease and phosphatase inhibitors) and
clarified by centrifugation at 12000 · g for 20 min. The lysates were
subjected to immunoprecipation for 20 h at 4 �C with anti-FGFR3
C-terminus (Sigma), anti-STAT3Ptyr705/STAT3 (Cell Signaling), anti-
FGFR3 (Sigma) antibodies using protein G agarose (Roche) and ana-
lyzed by SDS–PAGE (NUPAGE 4–12% Bis–Tris Gel-Invitrogen) and
Western blots. Protein bands were visualized using secondary antibod-
ies coupled to horseradish peroxidase and detected by chemilumines-
cence (ECL, Amersham Pharmacia Biotech) according to the
manufacturer’s instructions. PVDF membranes were stripped in 2%
SDS, 100 mM b-mercaptoethanol, 50 mM Tris, pH 6.8. Lysates were
immunoblotted with P21WAP/CIP1 (Transduction Laboratories),
ERK1/2-P (Cell Signaling) and ERK1/2 antibodies (Sigma). Cells were
treated with Human FGF18 (100 ng/ml; Peprotech) and heparin
(10 lg/ml) for the indicated times. All experiments were performed at
least three times.
Fig. 1. Morphology of primary and immortalized chondrocytes and FGFR
immortalized chondrocytes (GU-15). (E, F) Mutant immortalized chond
Immunofluorescence staining of primary (BE), immortalized (GU-15) and (G
2.5. Immunofluorescence
Immortalized chondrocytes were fixed in 4% PFA for 20 min, per-

meabilized in 0.1% triton X100/1XPBS and blocked in 10% normal
sheep serum. Incubation with primary antibodies: anti-FGFR3 at 1/
100 (Sigma) was for 1 h at room temperature followed by incubation
with secondary antibodies Alexa488 at 1/400 (Molecular Probes). Cells
were covered with mounting solution (Vector) and examined using an
Olympus IX2-UCB microscope.
3. Results

3.1. Molecular genotyping of the immortalized chondrocytes

Nine lines of immortalized Human chondrocytes were ob-

tained by sub-cloning: one control and eight mutant chondro-

cytic lines. Sequencing of the coding regions of the FGFR3

gene in the eight sub-cloned mutant chondrocytic lines de-

tected various heterozygous mutations in several domains of

the FGFR3 protein. One cell line carried the achondroplasia

mutation (G380R) located in the transmembrane domain, five

cell lines carried thanatophoric dysplasia type I (TDI) muta-

tions (R248C, S249C, G370C, Y373C) located in the extracel-
3 immunostaining. (A, B) Primary chondrocyte (BE). (C, D) Control
rocytes (GE-1.2). (A, C, E) Phase contrast microscopy. (B, D, F)

E-1.2) chondrocytes.
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lular domain. One cell line carried the thanatophoric dysplasia

type II (TDII) mutation (K650E) located in the tyrosine kinase

II domain. Finally one cell line carried the TDI (X807S)

mutation that abolishes the terminal stop codon of FGFR3

(Table 1).
Fig. 2. mRNA expression of matrix protein. (A) Analysis of SOX9
mRNA by reverse transcriptase polymerase chain reaction (RT-PCR)
in primary (GE) and immortalized lines (GU-15, BL-2.2, TU-4.3, DR-
2.1.10, BA-2.7, BD-1.11, GE-1.2, BR-1.13). (B) Analysis of mRNAs by
(RT-PCR) in primary (GE) and immortalized lines (GE-1.2, BL 2.2,
DR 2.1.10, GU 1.5).
3.2. Molecular phenotyping of the immortalized chondrocytes

The nine immortalized chondrocyte lines were morphologi-

cally similar to the primary chondrocytes. When grown in

monolayer, they conserved a homogenous polygonal shape

and did not have a flattened fibroblast-like shape in keeping

with de-differentiation (Fig. 1A). Observed by phase contrast

microscopy the control and mutant cell lines exhibited the

same phenotype in culture (Fig. 1C, E). The localization of

FGFR3 proteins in primary and immortalized chondrocytes

was investigated by using an antibody raised against the C-ter-

minal end of the protein. The FGFR3 protein was detected in

the cytoplasm of both mutant primary chondrocytes and

mutant cell lines (Fig. 1B, D, F).

In order to confirm the chondrogenic differentiation of the

cell lines, we analyzed the expression of chondrocyte-specific

genes, including SOX9, a key transcription factor of the

chondrocytic phenotype [19,20]. This gene was expressed at a

high level in control and mutant cell lines and in the corre-

sponding primary chondrocytes, as determined by RT-PCR

(Fig. 2A). The expression of the extracellular matrix protein

gene COL2A1 in primary chondrocytes was slightly higher

than that of COL2A1 mRNA in several cell lines (Fig. 2B).

COL1A1 mRNA was found in some cell lines. Moreover,

the majority of non-collagenous matrix genes, including, bigly-

can, aggrecan and decorin were detected in all cell lines and in

the corresponding primary chondrocytes (Fig. 2B). In lines

with RT-PCR results, the presence of proteoglycan in the

extracellular matrix was confirmed by alcian blue staining

(data not shown). Genes of matrix turnover such as Matrix

Metalloproteinase 3 (MMP3), the matrix-degrading protease,

and osteocalcin were also expressed both in cell lines and in

primary chondrocytes (Fig. 2B). The chondrocytic lines were

kept in culture up to passage 20. During this period, the cell

lines displayed a morphologic and phenotypic stability.
Fig. 3. FGFR3 and P21WAF1/CIP1 expression in immortalized chon-
drocytes. (A) Immunoprecipitation by anti-FGFR3 antibody (C-
terminal). Western blot analyses of protein lysates from immortalized
chondrocytes: [GU-15 (1), BL-2.2 (2), TU-4.3 (3), DR-2.1.10 (5), MA-
1.8.4 (7), BD-1.11 (6), GE-1.2 (8) BR-1.13 (9)] with an anti-FGFR3
antibody. (B) Western blot analyses of protein lysates from immor-
talized chondrocytes: [GU-15 (1), BL-2.2 (2), TU-4.3 (3), BA-2.7 (4),
DR-2.1.10 (5), BD-1.11 (6), GE-1.2 (8), BR-1.13 (9)] with an P21WAF1/

CIP1 antibody. Actin was used as a loading control.
3.3. High FGFR3 expression in the mutant cell lines and

P21WAF1/CIP1 induction

None of the missense FGFR3 mutations studied altered pro-

tein synthesis. Immunoprecipitation using an anti-FGFR3

antibody, detected the fully glycosylated FGFR3 protein

(130 kDa) in both control and mutant lines and we did not ob-

serve any degradation of the mutant FGFR3 compared to

wild-type FGFR3 proteins (Fig. 3A). For the cell line carrying

the stop codon mutation (X807S) and encoding an elongated

C-terminal domain, the antibody directed against the FGFR3

C-Terminal end failed to detect the protein with the predicted

141 amino acid extension (Fig. 3A). However, we cannot ex-

clude a degradation of the elongated protein.

We have previously reported an increased expression of

P21WAF1/CIP1in human TD and ACH growth plates [10]. This

feature has been also reported in PC12 cell lines carrying TDII

mutations [11]. Here we give support to this observation by

immunoblot analyses using an anti P21WAF1/CIP1 antibody

and show this up-regulation in all mutant cell lines (Fig. 3B).

P21WAF1/CIP1 an inhibitor of cyclin-dependent kinases, is
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known to trigger cell growth arrest, is a downstream target of

STAT and MAP kinase signaling and is involved in FGFR3

chondrodysplasias.

3.4. Activation of the STAT pathway in mutant chondrocyte

lines

Constitutive activation of the STAT pathway by mutant

FGFR3 has been documented previously, in a mouse model

and in human pathological cartilage [15,21]. We have reported

STAT1, STAT3, STAT5 activation in FGFR3 mutations in

correlation with disease severity [10]. We have also observed

a constitutive activation of the STAT pathway in the mutant

cell lines. Indeed, similarly to the mutant primary chondro-

cytes, the mutant cell lines exhibited a high level of ligand-inde-

pendant STAT3 phosphorylation. Moreover an over-

expression of STAT3 protein was observed in all mutant lines

(Fig. 4A). This increase was directly related to the phenotypic

severity as previously observed in ACH or TDI growth plates

[10].

3.5. FGF18 activates the MAP kinase pathway

The activation of the MAP kinase pathway was tested by

studying the level of ERK1/2 phosphorylation following stim-

ulation by FGF18. In the absence of ligand, no phosphory-

lated ERK1/2 was detected in control or mutant cell lines in
Fig. 4. STAT3 activation in immortalized chondrocytes. (A) STAT3
phosphorylation was assessed by immunoprecipitation by anti-STAT3.
Membranes were blotted with STAT3-P, stripped and reprobed with
STAT-3 antibody GU-15 (1), BL-2.2 (2), TU-4.3 (3), DR-2.1.10 (5),
MA-1.8.4 (7), BD-1.11 (6), GE-1.2 (8) BR-1.13 (9). (B) Immunode-
tection of activated ERK1/2 in immortalized chondrocytes. Duration
of ERK1/2 activation in GU-15, DR-2.1.10, BA-2.7, GE-1.2 lines by
FGF18 (100 ng/ml). Detection of P-ERK1/2 and ERK1/2 with anti P-
ERK1/2 and ERK1/2 antibodies. Actin was used as a loading control.
All the cells were depleted during 24 h before FGF18 stimulation.
Fig. 4B. The immortalized chondrocytes (lines 1–8) produced

high levels of phosphorylated ERK1/2 after thirty minutes or

one hour and two hours of FGF18 stimulation (Fig. 4B),

except for line 9 carrying the X807S mutation (data not

shown).
4. Discussion

Despite recent advances in understanding the role of

FGFR3 in skeletal development, the signaling pathways that

mediate its actions remain incompletely understood. In order

to investigate the impact of the FGFR3 mutations on the sig-

naling pathways, several cellular models including PC12,

HEK293, ATDC5 and RCS [11,22–25] have been used but

to date, no human chondrocyte cell line expressing a mutant

FGFR3 receptor has been described. The cell lines reported

here are the first human immortalized chondrocytes to be char-

acterized. Several immortalized chondrocyte lines derived from

various species have been shown to retain the ability to synthe-

size sulfated proteoglycans [26–29] but the expression of type

II collagen appears to be the most reliable criterium of chon-

drocyte differentiation [29]. In order to determine whether

our human chondrocyte cell lines could be regarded as a rele-

vant and reproducible model of chondrocyte differentiation,

we tested the expression of proteoglycan and collagens in

our cells. Aggrecan (a large aggregating proteoglycan), bigly-

can and decorin (small proteoglycans) are essential compo-

nents of matrix cartilage and were expressed in large

amounts in the immortalized cell lines. Our control and mu-

tant human chondrocyte lines also retained the ability to syn-

thesize type II collagen, and SOX9. A transcription factor that

regulates chondrogenesis, SOX9, is expressed in the normal

growth plate, articular cartilage and the immortalized cell lines

[30]. The immortalized lines conserved a chondrocytic pheno-

type and expressed type II collagen, aggrecan, and SOX9.

All these observations support the view that our chondrocytic

lines closely resemble primary chondrocytes.

Our mutant chondrocyte lines co-produced the mutant and

the wild-type FGFR3 proteins (Table 1). Yet the morphology

of the immortalized chondrocyte lines was not modified as a

result of the various heterozygous FGFR3 mutations. Further

immunostaining and confocal microscopy experiments are

needed to visualize the localization of the mutant receptor in

the immortalized chondrocytes. In accordance with previous

studies, the preliminary experiments reported here, suggest

that FGF signaling in mutant chondrocyte lines can increase

the expression of STAT and induce the expression of the

cell-cycle inhibitor P21WAF1/CIP1. There is strong evidence that

STAT and P21WAF1/CIP1 activation is critical to chondrodys-

plasia. The contribution of the MAP kinase pathway to the

pathogenesis remains an open question: although in mice,

the MAP kinase pathway is activated in a constitutive manner

in the presence of FGFR3 mutations [14] our data show an ab-

sence of constitutive activation in human immortalized

chondrocytic lines and primary chondrocytes [9]. The absence

of MAP kinase activation, in the mutant line encoding an elon-

gated C-terminal domain, is intriguing and justifies being the

subject of further study. It is probable that the wild-type and

the mutant proteins play a distinct role in the regulation of

chondrocyte proliferation and differentiation and conse-

quently, activate various signaling pathways differently.
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So far, it has been difficult to assess the immediate effects of

FGFR3 mutations and to evaluate the functional significance

of MAP kinase and STAT signaling upon hypertrophic

differentiation through biochemical manipulations in cells.

The human immortalized chondrocytic cell lines described here

will shed light on the signaling pathways downstream to

FGFR3.

In conclusion, the human chondrocyte lines reported here

seem relevant to the study of pathophysiological and therapeu-

tic approaches of chondrodysplasias.
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