4,357 research outputs found

    How Cooperative are the Dynamics in Tunneling Systems? A Computer Study for an Atomic Model Glass

    Full text link
    Via computer simulations of the standard binary Lennard-Jones glass former we have obtained in a systematic way a large set of close-by pairs of minima on the potential energy landscape, i.e. double-well potentials (DWP). We analyze this set of DWP in two directions. At low temperatures the symmetric DWP give rise to tunneling systems. We compare the resulting low-temperature anomalies with those, predicted by the standard tunneling model. Deviations can be traced back to the energy dependence of the relevant quantities like the number of tunneling systems. Furthermore we analyze the local structure around a DWP as well as the translational pattern during the transition between both minima. Local density anomalies are crucial for the formation of a tunneling system. Two very different kinds of tunneling systems are observed, depending on the type of atom (small or large) which forms the center of the tunneling system. In the first case the tunneling system can be interpreted as a single-particle motion, in the second case it is more collective

    Deep-Elastic pp Scattering at LHC from Low-x Gluons

    Full text link
    Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ~0.3 F. Our prediction is that pp differential cross section in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp differential cross section with visible oscillations and smaller cross sections by a large number of other models.Comment: 10 pages, including 4 figure

    Local Properties of the Potential Energy Landscape of a Model Glass: Understanding the Low Temperature Anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in the sound absorption, heat capacity, thermal conductivity and other quantities, an exact description of their microscopic nature is still lacking. We performed computer simulations for a binary Lennard-Jones system, using a newly developed algorithm to locate double-well potentials (DWP) and thus two-level systems on a systematic basis. We show that the intrinsic limitations of computer simulations like finite time and finite size problems do not hamper this analysis. We discuss how the DWP are embedded in the total potential energy landscape. It turns out that most DWP are connected to the dynamics of the smaller particles and that these DWP are rather localized. However, DWP related to the larger particles are more collective

    What is moving in silica at 1 K? A computer study of the low-temperature anomalies

    Full text link
    Though the existence of two-level systems (TLS) is widely accepted to explain low temperature anomalies in many physical observables, knowledge about their properties is very rare. For silica which is one of the prototype glass-forming systems we elucidate the properties of the TLS via computer simulations by applying a systematic search algorithm. We get specific information in the configuration space, i.e. about relevant energy scales, the absolute number of TLS and electric dipole moments. Furthermore important insight about the real-space realization of the TLS can be obtained. Comparison with experimental observations is included

    Particle rearrangements during transitions between local minima of the potential energy landscape of a supercooled Lennard-Jones liquid

    Full text link
    The potential energy landscape (PEL) of supercooled binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into meta-basins (MB). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature T_MCT. The analysis includes the displacements of individual particles, the localization of the rearrangements and the relevance of string-like motion. We find that the particle rearrangements during IS and MB transitions do not change significantly at T_MCT. Further, it is demonstrated that IS and MB dynamics are spatially heterogeneous and facilitated by string-like motion. To investigate the mechanism of string-like motion, we follow the particle rearrangements during suitable sequences of IS transitions. We find that most strings observed after a series of transitions do not move coherently during a single transition, but subunits of different sizes are active at different times. Several findings suggest that the occurrence of a successful string enables the system to exit a MB. Moreover, we show that the particle rearrangements during two consecutive MB transitions are basically uncorrelated. Specifically, different groups of particles are highly mobile during subsequent MB transitions. Finally, the relation between the features of the PEL and the relaxation processes in supercooled liquids is discussed.Comment: 13 pages, 10 figure
    • …
    corecore