13 research outputs found
Limitations of two-level emitters as nonlinearities in two-photon controlled-phase gates
We investigate the origin of imperfections in the fidelity of a two-photon
controlled-phase gate based on two-level-emitter non-linearities. We focus on a
passive system that operates without external modulations to enhance its
performance. We demonstrate that the fidelity of the gate is limited by
opposing requirements on the input pulse width for one- and two-photon
scattering events. For one-photon scattering, the spectral pulse width must be
narrow compared to the emitter linewidth, while two-photon scattering processes
require the pulse width and emitter linewidth to be comparable. We find that
these opposing requirements limit the maximum fidelity of the two-photon
controlled-phase gate for Gaussian photon pulses to 84%.Comment: 7 pages, 6 figure
Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model
Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α(2)-isoform of the sodium-potassium pump (α(2)Na(+)/K(+)-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α(2)(+/G301R)) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α(2)(G301R/G301R) E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α(2)(+/G301R) male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α(2)(+/G301R) behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2
Maternally Contributed Folate Receptor 1 Is Expressed in Ovarian Follicles and Contributes to Preimplantation Development
Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1
Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1
ObjectiveEnd-point bioassays based on thymidine or sulfate incorporation have demonstrated that glucocorticoid (GC) treatment inhibits serum IGF1 action, but the mechanism is unknown as serum IGF1 concentrations have been reported to either increase or remain unchanged.AimTo investigate whether GC treatment affects the ability of serum to activate the IGF1 receptor (IGF1R) in vitro (i.e. bioactive IGF1), using a specific cell-based IGF1 kinase receptor activation assay.Subjects and methodsTwenty children with stable asthma (age 7.7–13.8 years) treated for 1 week with 5 mg prednisolone in a randomized, double-blind, placebo-controlled crossover study. Non-fasting serum samples were collected in the afternoon after each 7-day period and assayed for bioactive IGF1, free IGF1, total IGFs, IGF-binding proteins (IGFBPs), and insulin.ResultsPrednisolone treatment reduced IGF1 bioactivity by 12.6% from 2.22±0.18 to 1.94±0.15 μg/l (P=0.01) compared with placebo. In contrast, no changes were observed for (μg/l; placebo vs prednisolone) total IGF1 (215±27 vs 212±24), free IGF1 (1.50±0.16 vs 1.43±0.17), total IGF2 (815±26 vs 800±31), IGFBP3 (3140±101 vs 3107±95), IGFBP2 (238±21 vs 220±19), IGFBP1 (32±6 vs 42±10), or IGFBP1-bound IGF1 (24±5 vs 26±7). Insulin remained unchanged as did IGFBP levels as estimated by western ligand blotting. Prednisolone had no direct effects on IGF1R phosphorylation.ConclusionsOur study gives evidence that GC treatment induces a circulating substance that is able to inhibit IGF1R activation in vitro without affecting circulating free or total IGF1. This may be one of the mechanisms by which GC inhibits IGF1 action in vivo. However, the nature of this circulating substance remains to be identified.</jats:sec
Pubertal Progression and Reproductive Hormones in Healthy Girls With Transient Thelarche
Abstract
Context:
Detailed evaluation of pubertal progression in girls from longitudinal studies is sparse, and the phenomenon of transient thelarche (TT), defined as the appearance, regression, and subsequent reappearance of breast buds, in healthy girls remains undescribed.
Objective:
To describe TT in terms of pubertal progression, growth, genotypes, and reproductive hormones and to apply new puberty nomograms for breast stages, pubic hair, and menarche.
Design:
A prospective, longitudinal population-based study.
Patients or Other Participants:
Ninety-eight healthy Danish schoolchildren (Caucasian girls) followed longitudinally as part of the COPENHAGEN Puberty Study were included in the evaluation of TT. A total of 1466 girls from 2 cross-sectional studies were included in the creation of the puberty nomograms.
Intervention(s):
None.
Main Outcome Measure(s):
Pubertal progression, specifically thelarche, reproductive hormones, genotype, and growth.
Results:
Twelve of 98 (12%) girls experienced TT. A larger proportion of girls with TT entered puberty by the pubarche pathway (50%) compared with girls with normal progression (15.4%), P = 0.014. Girls with TT progressed through puberty normally when evaluated using puberty nomograms. Reproductive hormones and growth velocity were lower at the first (transient) thelarche than the second (permanent) thelarche.
Conclusion:
TT is a frequent phenomenon that appears to be a peripheral occurrence independent of central puberty. It does not appear to affect subsequent pubertal progression as evaluated by our new puberty nomograms.
</jats:sec