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We investigate the origin of imperfections in the fidelity of a two-photon controlled-PHASE gate based on
two-level-emitter nonlinearities. We focus on a passive system that operates without external modulations to
enhance its performance. We demonstrate that the fidelity of the gate is limited by opposing requirements on the
input pulse width for one- and two-photon-scattering events. For one-photon scattering, the spectral pulse width
must be narrow compared with the emitter linewidth, while two-photon-scattering processes require the pulse
width and emitter linewidth to be comparable. We find that these opposing requirements limit the maximum
fidelity of the two-photon controlled-PHASE gate to 84% for photons with Gaussian spectral profiles.
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I. INTRODUCTION

Key requirements for the successful implementation of pho-
tonic quantum computing architectures are (i) efficient sources
of single indistinguishable photons, and (ii) a method to co-
herently interact two such photons [1–7]. Since these require-
ments were first stated, single-photon sources have steadily
improved [7–10], with the most promising platforms based on
few-level emitters, most notably semiconductor quantum dots
[11–13] which now boast near-unity indistinguishability with
(source to first objective) efficiencies above 70%. Generating
photon-photon interactions can be achieved by “off-line
nonlinearities” consisting of measurements and feed-forward
[1–4,7], or deterministically by using “in-line” nonlinearities
based on a nonlinear material through which two or more
photons interact [14–17]. These in-line nonlinearities can in
principle also be generated by few-level emitters [18–20],
suggesting a quantum photonic architecture in which few-level
systems act as both photon sources and photon couplers.

Experimentally, probabilistic photonic gates have been
demonstrated by using off-line nonlinearities in both free space
[7,21,22] and in integrated platforms [5,23]. Strong in-line
nonlinearities and photon switching have been achieved by
using Rubidium atoms strongly coupled to optical cavities
[17,24–26], quantum dots in photonic crystal cavities [27–30],
and nitrogen vacancy centers in diamond [31]. The poten-
tially deterministic nature of few-photon in-line nonlinearities
makes this approach particularly attractive for the realization
of photonic gates, and a number of proposals have been put
forward to construct controlled-PHASE gates on various plat-
forms and with various degrees of complexity [14,15,32–36].
Some proposals even have the potential to operate at near-
unity fidelities by using distributed interactions [36] or pulse
reshaping techniques [35], although these approaches have
the challenges of high complexity and potentially high losses.
Ultimately the usefulness of a photonic gate in future quantum
computing architectures will depend on the ease with which it
can be experimentally realized and repeated, and the maximum
efficiency and fidelity that it can achieve.

In this work we analyze the performance of perhaps the
simplest deterministic passive controlled-PHASE gate, which

acts on two uncorrelated indistinguishable photons in a
dual-rail encoding. The idealized gate we consider uses the
in-line nonlinearities of two two-level-emitters embedded in
lossless waveguides. The fundamental operating principle of
the gate relies on the saturability of a two-level emitter, which
means that the phase imparted onto a photon or photons
scattering on such an emitter depends on how many photons
are present [19,20,37,38]. Although it has been shown that
such a gate can never perform with perfect fidelity [38,39],
the purpose of this work is to understand the limits and
origins of its imperfections with a view towards improved
future implementations. Even in the loss-less case where the
gate is fully deterministic, we show that the maximum gate
fidelity is limited to 84% for single photons with Gaussian
spectral profiles. This number is determined by opposing
requirements on the spectral width of the input photons;
one-photon scattering requires spectrally narrow photons so
that the greatest fraction is strictly resonant with the emitters,
while two-photon scattering requires photons with spectral
widths similar to the emitter linewidths, which maximizes
saturation effects. Although the fidelities we calculate are
significantly less than unity, in contrast to other schemes,
the present one does not use dynamical photon capture meth-
ods [34], uses only two (identical) emitters per gate [36], and
does not take advantage of possible pulse reshaping techniques
[35], all of which are likely to introduce additional losses.

This paper is organized as follows: In Sec. II the basic
gate structure and components are introduced, and the gate
operation in an idealized case is discussed. In Secs. III and IV a
more realistic scenario is analyzed and the linear and nonlinear
gate operations are described. A general fidelity measure is
considered in Sec. V to quantify the gate performance, and we
conclude our findings in Sec. VI.

II. THE CONTROLLED-PHASE GATE

The structure implementing the gate, shown in Fig. 1, con-
sists of two phase shifters, two directional couplers, and two
two-level emitters, similar to the systems in Refs. [1,35,40].
We focus here on two-level-emitters, although we note that
very-high-Q cavities could also be used [41,42], in which
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FIG. 1. (a) Schematic of the controlled-PHASE gate, which uses
chiral waveguides, directional couplers, phase shifters, and two
identical quantum emitters. The central idea of the gate is that the
directional couplers act as 50/50 beam splitters, and as such the input
state |1c〉|1s〉 gives rise to a Hong–Ou–Mandel bunching effect which
can access the inherent nonlinearities of the emitters. Only the |1c〉|1s〉
input state bunches in this way, while all others transform linearly,
thus providing a fundamental nonlinear interaction which can realize
a two-photon gate. We focus on the chiral setup illustrated in panel
(a), although an equivalent scheme can be realised with conventional
bidirectional couplers as shown in panel (b). Note that the 1 arm for
the control and signal is interchanged at the output ports in both cases.

splitting of the energy spectrum arises through the nonlinear
Kerr effect [43]. In Fig. 1(a) we envisage chiral waveguides,
for which propagation is permitted only in one direction. We
note, however, that an equivalent scheme can be realized by
using standard bidirectional waveguides with the emitters and
perfectly reflecting mirrors placed at their ends, as illustrated
in Fig. 1(b). For concreteness we focus on the chiral setup
of Fig. 1(a), although all of our subsequent analysis equally
applies to the two-way setup in Fig. 1(b). The central idea
behind the scheme is that the components and waveguides
are arranged in such a way that only the combined control
and signal input state |1c〉|1s〉 accesses the nonlinearity of the
two-level systems.

To gain some intuition, we first consider quasimonochro-
matic input photons, having a bandwidth much narrower than
that of the emitters. Since the state of one photon can affect
the state of the other, we must in general consider how pairs of
photons are transformed by the gate components. Consider first

the evolution of two photons in the state |0c〉|0s〉. From Fig. 1
we see that these photons each pick up a phase of ϕ, producing
the transformation |0c〉|0s〉 → e2iϕ |0c〉|0s〉. For input states
|1c〉|0s〉 or |0c〉|1s〉, the photon in the |0〉 state again picks
up a phase of ϕ, while the other passes through the directional
couplers and a two-level emitter. The directional couplers act
as 50/50 beam splitters, affecting the mode transformation,[

a
†
1c

a
†
1s

]
−→ 1√

2

[
1 −i

−i 1

][
a
†
1c

a
†
1s

]
, (1)

where a
†
1c|φ〉 = |1c〉 and a

†
1s|φ〉 = |1s〉 with |φ〉 denoting the

vacuum. In this simplistic quasimonochromatic scenario, let us
assume a single photon incident on the emitter acquires a phase
of θ . Then the combined effects of the two directional couplers
and the emitter cause the transformation |1s〉 → −ieiθ |1c〉 and
|1c〉 → −ieiθ |1s〉. Therefore the photonic states transform as
|1c〉|0s〉 → −ieiϕeiθ |1s〉|0s〉 and |0c〉|1s〉 → −ieiϕeiθ |0c〉|1c〉.
Considering now the input state |1c〉|1s〉, we find that the
action of the first directional coupler is to give rise to
the Hong–Ou–Mandel interference effect; immediately after
the first directional coupler we have a state proportional to
[(a†

1c)2 + (a†
1s)

2]|φ〉, in which two photons are incident on each
emitter in superposition. We denote the phase acquired by a
two-photon state passing through an emitter as χ , and therefore
find that, following the second directional coupler, we have the
transformation |1c〉|1s〉 → (−i)2eiχ |1c〉|1s〉.

Collecting these results and relabelling −i|1s〉 → |1c〉 and
−i|1c〉 → |1s〉, we find

|0c〉|0s〉 −→ e2iϕ|0c〉|0s〉,
|0c〉|1s〉 −→ eiϕeiθ |0c〉|1s〉,
|1c〉|0s〉 −→ eiϕeiθ |1c〉|0s〉,
|1c〉|1s〉 −→ eiχ |1c〉|1s〉. (2)

If the emitters acted as linear optical elements, we would have
χ = 2θ . Absorbing the phases ϕ and θ into the definitions
of |0〉 and |1〉, respectively, the transformation is locally
equivalent to the identity and therefore does not mediate
any two-photon interaction. However, if the emitter-photon
interaction can be tailored such that θ = ϕ and χ = 2ϕ + π ,
the transformation in Eq. (2) becomes proportional to the
desired control phase gate unitary diag(1,1,1,−1). As such,
if the conditions θ = ϕ and χ = 2ϕ + π can be met, a
controlled-PHASE gate is realized. Although we do not expect
this to be possible with perfect accuracy [38], in what follows
we explore the differing requirements on the pulse shape
relative to the emitter linewidth which these conditions impose.

In addition to the two-level-emitters, the other essential
components of the gate are the directional couplers needed to
produce the transformation in Eq. (1) and induce the Hong–
Ou–Mandel effect for the input state |1c〉|1s〉. These compo-
nents may be realized in various waveguide technologies, such
as silica-on-silicon ridge waveguides [44], GaAs photonic
ridge waveguide circuits [45], photonic-crystal waveguides
[46], or silicon-on-insulator platforms [47], where in all cases
the length of the coupling region must be engineered such
the symmetrical beam splitter relation in Eq. (1) is achieved.
We also note that, due to the choice of directional coupler, the
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output port of the “1” control and signal states are swapped,
as indicated in Fig. 1(a). This amounts to nothing more
than notation and could easily be rectified by introducing a
crossover between the two 1 outputs.

For proper functionality of the gate, the input states
|0c〉|0s〉, |1c〉|0s〉, and |0c〉|1s〉, which only experience linear
scattering effects, and the input state |1c〉|1s〉, which undergoes
a nonlinear transformation, must all provide the desired
output states in Eq. (2) when θ = ϕ and χ = 2ϕ + π . These
scattering-induced changes are investigated below, treating the
linear and nonlinear case separately.

III. LINEAR GATE INTERACTIONS

Let us now consider the gate components in more detail
and analyze the conditions under which the scheme can be
realized for more realistic nonmonochromatic single-photon
inputs. We describe a single photon in the |0c〉 state as

|0c〉 =
∫ ∞

−∞
dkξ (k)a†

0c(k)|φ〉, (3)

where |φ〉 is again the vacuum, ξ (k) is the spectral profile of
the photon satisfying

∫ ∞
−∞ dk|ξ (k)|2 = 1, while a

†
0c(k) is the

creation operator of photons in the control “0” waveguide with
momentum k, satisfying [a0c(k),a†

0c(k′)] = δ(k − k′). We note
that these conditions ensure that the input state |0c〉 contains
exactly one photon, and we consider a rotating frame such
that k is measured relative to the carrier momentum, k0 =
ω0/c. The simple transformations in Eq. (2) are not generally
valid for photonic wave packets comprised by many k modes
because the phases ϕ and θ depend on k. In a large-scale
system, the output from one gate must function as the input
to another gate and they should therefore only differ by a
time translation, which in momentum space corresponds to
the transformation ξ (k) → ξ (k)eiϕ(k) with

ϕ(k) = ϕ0 + kL, (4)

where L is an additional optical path length of the 0
waveguides, either induced by a change in the refractive index
of the material or by a longer arm length.

When ϕ(k) is of the form in Eq. (4), the input state |0c〉|0s〉
is described by a product of two single-photon states of the
form in Eq. (3), and we write the corresponding output state
as |0c〉|0s〉 → |0̃c〉|0̃s〉 with

|0̃c〉 = −
∫ ∞

−∞
dkξ (k)eikLa

†
0c(k)|φ〉, (5)

and a similar definition for |0̃s〉. Single photons with states
of this form will be considered our “ideal” output states,
since they are identical to the input state up to a linear
frequency-dependent phase corresponding to a fixed temporal
delay. The choice of ϕ0 = π has been chosen in anticipation
of the transformation of the |0c〉|1s〉 state discussed below.

We now consider changes to the two input states with a
single photon in one of the 1 arms, |0c〉|1s〉 and |1c〉|0s〉. The
photon in the 0 arm is treated analogously to Eq. (5), while that
in the 1 arm instead interacts with an emitter. Photons passing
through the 1 arms must also give rise to states differing from
input states only by a time translation. To see the conditions
under which this is the case, we consider a nonmonochromatic

k   (units of /vg)

2

3 /2

/2

0
-2-4 0 2 4

ph
as

e

(k)

Norm. pulse
Linearized (k)

FIG. 2. Phase θ (k) acquired by a single-photon wave-packet
component with moment k propagating in a chiral waveguide
scattering on a lossless resonant emitter (black solid line), together
with a linear approximation; see Eq. (8) (green dashed line). By
comparison, the spectrum of a resonant Gaussian wave packet with
spectral FWHM of σ = �/vg is shown (orange dotted line) with a
scaled intensity to match the plotting window.

single photon as described by Eq. (3) scattering on a two-level
emitter in a chiral waveguide. The photon will acquire a
complex coefficient t(k) for each momentum component k,
resulting in a photon with spectral profile t(k)ξ (k). The
frequency-dependent transmission coefficient is [48,49]

t(k) = k − � − i(� − γ )/vg

k − � + i(� + γ )/vg
, (6)

where vg is the group velocity in the waveguide, � is the
momentum detuning of the emitter from the pulse carrier
frequency, � is the emitter decay rate into waveguide modes,
and γ is the loss rate into modes outside the waveguide
[49]. Recalling the effect of the directional couplers, we
find that the states transform as |0c〉|1s〉 → −i|0̃c〉|1̄c〉 and
|1c〉|0s〉 → −i|1̄s〉|0̃s〉, where

|1̄c〉 =
∫ ∞

−∞
dkξ (k)t(k)a†

1c(k)|φ〉, (7)

with a similar definition for |1̄s〉. In the lossless case, γ = 0
and |t(k)| = 1, meaning that 〈1̄c|1̄c〉 = 1 and the output state
contains exactly one photon. As previously discussed, we can
simply relabel what we refer to as the control and signal
photons in the outputs and absorb factors of −i in these
definitions. We then have |0c〉|1s〉 → |0̃c〉|1̄s〉 and |1c〉|0s〉 →
|1̄c〉|0̃s〉.

What is required, however, is that each photon has a spectral
profile identical to an ideal state, |1̃c〉 or |1̃s〉, defined as in
Eq. (5) with a

†
0c replaced with a

†
1c or a

†
1s. Considering again

the lossless case where γ = 0 we can write t(k) = exp[iθ (k)].
The phase θ (k) is shown as a function of k in Fig. 2. If the
incoming single photon has a carrier frequency corresponding
to the emitter transition frequency, � = 0, the phase can be
Taylor expanded around k/�̃ = 0, producing

θ (k) = π + 2
k

�̃
+ O

(
k

�̃

)3

, (8)

where �̃ = �/vg. Keeping the condition ϕ = θ in mind
and comparing Eqs. (4) and (8), we see that a good gate
performance requires |k| � �̃, which corresponds to pulses
with a spectrum that is much narrower than the emitter
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FIG. 3. Overlap between the ideal and scattered state for logical
inputs |1c〉|0s〉 or |0c〉|1s〉 as a function of the additional optical length
of the 0 arms, L, and the input spectral width σ defined in Eq. (9).

linewidth. For spectrally broader photons for which ξ (k)
extends beyond k ∼ �̃, terms of higher order in k will have an
influence and introduce chirping effects [19,20].

To illustrate this in more detail for a specific case, let us
consider a Gaussian single-photon wave packet, defined by the
spectral profile

ξ (k) = (πσ ′2)−1/4 exp[−k2/(2σ ′2)], (9)

where the spectral bandwidth (FWHM of the intensity spec-
trum) is σ = 2

√
ln(2)σ ′. Figure 3 plots the magnitude of the

overlap between the desired (ideal) state and actual state for
a Gaussian spectrum as described above. As expected, the
overlap increases when the spectral width σ is decreased. The
optimum additional path length L approaches L=2vg/� as σ

is decreased, which is expected from the linear term in Eq. (8).
For larger spectral widths, the optimum L decreases because
a straight line with a slope smaller than 2vg/� approximates
the phase θ (k) better in this case, as seen in Fig. 2.

IV. NONLINEAR GATE INTERACTIONS

The nonlinear interaction occurs for the input state |1c〉|1s〉,
where two photons may be present at the scatterers simultane-
ously, introducing nonlinear interactions through a two-photon
bound state [37]. The nonlinear scattering is treated by the
scattering matrix formalism following Ref. [37], and we
include the directional coupler when calculating the scattered
state of the entire gate. The gate input consists of two
uncorrelated identical photons which we describe by

|ψin〉 =
∫ ∞

−∞

∫ ∞

−∞
dkdk′ξ (k)ξ (k′)a†

c1(k)a†
s1(k′)|φ〉, (10)

where as before
∫ ∞
−∞ dk|ξ (k)|2 = 1 to ensure that |ψin〉 con-

tains two photons. Following the action of the first directional
coupler, scattering on the two-level emitters, and passing
through the second directional coupler, we find |ψin〉 → |ψscat〉
with the total scattered state given by

|ψscat〉 =
∫ ∞

−∞

∫ ∞

−∞
dkdk′βscat(k,k′)a†

c1(k)a†
s1(k′)|φ〉, (11)

where we have removed a factor of (−i)2 to be consistent with
our definitions of the output states, and

βscat(k,k′) = β linear
scat (k,k′) + 1

2b(k,k′), (12)
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FIG. 4. Overlap between the ideal and scattered state for the
|1c〉|1s〉 input as a function of the additional optical length of the
0 arms, L, and the input pulse width σ .

with the linear contribution given by β linear
scat (k,k′) =

t(k)t(k′)ξ (k)ξ (k′) and a nonlinear scattering contribution by

b(k,k′) =
∫ ∞

−∞
dp ξ (p)ξ (k + k′ − p)Bkk′p(k+k′−p). (13)

The scatterer-dependent coefficient Bkk′pp′ is evaluated in
Ref. [49] for a two-level system,

Bkk′pp′ = i

√
2�/vg

π
s(k)s(k′)[s(p) + s(p′)], (14)

where

s(k) =
√

2�/vg

k − � + i(� + γ )/(vg)
. (15)

The ideal output state in the nonlinear case is

|1̃c〉|1̃s〉 = −
∫ ∞

−∞

∫ ∞

−∞
dkdk′ei(k+k′)La

†
c1(k)a†

s1(k′)|φ〉, (16)

where the minus sign accounts for the required phase flip that
defines the controlled-PHASE gate.

To gain some insight into how well the actual state |ψscat〉
approximates the ideal state in Eq. (16), we plot the magnitude
of their overlap as a function of L and σ in Fig. 4, again for
Gaussian input pulses. In contrast to the one-photon-scattering
case in Fig. 3, we now see that the largest overlap is observed
for pulse widths σ ≈ 2.2�/vg. This is because it is for these
widths that the nonlinearities are strongest and the required
π phase shift can be generated, consistent with the results
in Ref. [20].1 Furthermore, the optimal value of L in this
nonlinear-scattering case is significantly lower than in the
linear case. A comparison of Figs. 3 and 4 demonstrates
that limitations in the gate performance are expected to
occur because of these different requirements on σ and L

to optimally approximate the ideal output states in the linear
and nonlinear cases, which we now explore in more detail.

1In Ref. [20], the interaction is reported strongest when σ ∼ �/vg.
This occurs for an emitter in a bidirectional waveguide, which
effectively has a decay rate twice as large as for the single-directional
problem considered in this work. Thus, when projected onto this
work, the strongest nonlinearity is expected around σ ∼ 2�/vg.
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V. FIDELITY OF GATE OPERATION

To find the optimal spectral width σ and path length
difference L, we now consider the operation of the gate as
a whole. When incorporated into a larger optical circuit, the
logical input state of the gate will necessarily be unknown,
and the gate must therefore be able to operate for any linear
combination of the four possible logical input states. As such,
the gate performance must be quantified by a fidelity based
on a worst-case scenario, in which the output state of the
gate is compared with the ideal target output state, minimized
over all possible input states. A gate fidelity meeting these
requirements is defined as [50]

F (Û ,Ê) ≡ min
|ψ〉

Fs(Û |�〉〈�|Û †,Ê(|�〉〈�|)), (17)

where Û and Ê describe the transformations of the ideal and
actual gate, respectively, and Fs is the state fidelity defined
by [50]

Fs(ρ̂,σ̂ ) ≡ Tr
{√

ρ̂
1
2 σ̂ ρ̂

1
2
}
, (18)

for two density operators, ρ̂ and σ̂ . The arbitrary input state
|�〉 is given by

|�〉 = (α|0s〉 + β|1s〉) ⊗ (ζ |0c〉 + ϑ |1c〉)
= αζ |00〉 + αϑ |01〉 + βζ |10〉 + βϑ |11〉, (19)

where |0s〉|0c〉 ≡ |00〉, etc. Using the definitions from previous
sections, the ideal gate transformation is

Û |�〉 = αζ |0̃0̃〉 + αϑ |0̃1̃〉 + βζ |1̃0̃〉 − βϑ |1̃1̃〉. (20)

If we neglect loss, the output states are pure and the
actual (possibly imperfect) transformation is described by
Ê(|�〉〈�|) = T̂ |�〉〈�|T̂ †, with

T̂ |�〉 = αζ |0̃0̃〉 + αϑ |0̃1̄〉 + βζ |1̄0̃〉 + βϑ |ψscat〉, (21)

where |ψscat〉 is given by Eq. (11). For pure states, Eq. (18)
simplifies to Fs(|a〉〈a|,|b〉〈b|) = |〈a|b〉|, and the state fidelity
is therefore

Fs(Û |�〉〈�|Û †,T̂ |�〉〈�|T̂ †)

= |〈�|Û †T̂ |�〉|
= ||αζ |2 + 〈1̃|1̄〉(|αϑ |2 + |βζ |2) − |βϑ |2〈1̃1̃|ψscat〉|. (22)
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FIG. 5. Gate fidelity as a function of the additional optical length
of the 0 arms, L, and the input pulse width σ .
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To find the fidelity of the gate for a given pulse width and
path length difference, this state fidelity must be minimized
over all possible logical input states |�〉 parameterized by the
coefficients α, β, ζ, ϑ . Since the state fidelity only depends
on the magnitude of the coefficients and the signal and control
input states both must be normalized, the minimization in
Eq. (17) can be carried out by varying only, e.g., |α| and |ζ |.
By performing this minimization for different values of σ and
L, the trade-offs due to the effects of linear and nonlinear
scattering can be quantified. The result is shown in Fig. 5,
where the gate fidelity is plotted as a function of L and σ ,
again for Gaussian pulses. The optimum set of parameters is
seen to be close to that in Fig. 4 but shifted towards smaller
pulse widths and larger L, where the optimum was observed
in Fig. 3. This trend is expected, since Eq. (22) effectively
performs a weighted average of the overlaps in Figs. 3 and 4.

To confirm that the gate fidelity indeed corresponds to a
worse-case scenario, Fig. 6 shows the dependence of the state
fidelity on the input states for the optimum parameter set in
Fig. 5. It shows that the state fidelity approaches unity for the
state |0c〉|0s〉, and is above 84% for the entire state space, as
expected.

Finally, we note that our formalism easily allows for spectra
other than Gaussians to be considered. Most notably, we find
that Lorentzian spectral profiles result in a worse gate fidelity
of F ≈ 62%. Although a Lorentzian-shaped single-photon
is expected to most efficiently populate a two-level emitter,
two such coincident pulses give rise to a smaller induced
nonlinearity [19], which is an essential requirement for the
gate to operate. We find that sech2 pulses achieve a fidelity
marginally better than Gaussian pulses, raising the gate fidelity
by only 0.5%. Ultimately active modification of spectra may
be necessary if gates based on two-level-emitter nonlinearities
are to attain fidelities approaching unity [35].

VI. CONCLUSION

We have investigated in detail the feasibility of using two-
level-emitter nonlinearities to construct a passive two-photon
controlled-PHASE gate, elucidating the nonlinearity-induced
changes in the spectrum. We find that these effects ultimately
limit the fidelity of a controlled-PHASE gate based on two-level-
emitter nonlinearities, giving F ≈ 84% for Gaussian input
pulses, decreasing to F ≈ 62% for Lorentzian spectra. We
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emphasize, however, that the scheme we consider requires no
dynamical capture of photons [34], uses only two identical
two-level emitters, and does not make use of pulse reshaping
techniques. Although schemes making use of multiple non-
linearities per gate [36], or gradient echo memory [35] to
reverse pulse shapes, predict theoretical fidelities approaching
unity, these processes increase the complexity of the gate and
are likely to introduce additional losses. Ultimately it seems
likely that efficiency-fidelity trade-offs will be present in any
gate scheme, and these trade-offs must be carefully considered
in a larger photonic network with a given application.
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