196 research outputs found
Expansion Trees with Cut
Herbrand's theorem is one of the most fundamental insights in logic. From the
syntactic point of view it suggests a compact representation of proofs in
classical first- and higher-order logic by recording the information which
instances have been chosen for which quantifiers, known in the literature as
expansion trees.
Such a representation is inherently analytic and hence corresponds to a
cut-free sequent calculus proof. Recently several extensions of such proof
representations to proofs with cut have been proposed. These extensions are
based on graphical formalisms similar to proof nets and are limited to prenex
formulas.
In this paper we present a new approach that directly extends expansion trees
by cuts and covers also non-prenex formulas. We describe a cut-elimination
procedure for our expansion trees with cut that is based on the natural
reduction steps. We prove that it is weakly normalizing using methods from the
epsilon-calculus
Some observations on the logical foundations of inductive theorem proving
In this paper we study the logical foundations of automated inductive theorem
proving. To that aim we first develop a theoretical model that is centered
around the difficulty of finding induction axioms which are sufficient for
proving a goal.
Based on this model, we then analyze the following aspects: the choice of a
proof shape, the choice of an induction rule and the language of the induction
formula. In particular, using model-theoretic techniques, we clarify the
relationship between notions of inductiveness that have been considered in the
literature on automated inductive theorem proving. This is a corrected version
of the paper arXiv:1704.01930v5 published originally on Nov.~16, 2017
Herbrand-Confluence for Cut Elimination in Classical First Order Logic
We consider cut-elimination in the sequent calculus for classical
first-order logic. It is well known that this system, in its most
general form, is neither confluent nor strongly normalizing. In this
work we take a coarser (and mathematically more realistic) look at
cut-free proofs. We analyze which witnesses they choose for which
quantifiers, or in other words: we only consider the
Herbrand-disjunction of a cut-free proof. Our main theorem is a
confluence result for a natural class of proofs: all (possibly
infinitely many) normal forms of the non-erasing reduction lead to the
same Herbrand-disjunction
On the Herbrand content of LK
We present a structural representation of the Herbrand content of LK-proofs
with cuts of complexity prenex Sigma-2/Pi-2. The representation takes the form
of a typed non-deterministic tree grammar of order 2 which generates a finite
language of first-order terms that appear in the Herbrand expansions obtained
through cut-elimination. In particular, for every Gentzen-style reduction
between LK-proofs we study the induced grammars and classify the cases in which
language equality and inclusion hold.Comment: In Proceedings CL&C 2016, arXiv:1606.0582
Project Presentation: Algorithmic Structuring and Compression of Proofs (ASCOP)
International audienceComputer-generated proofs are typically analytic, i.e. they essentially consist only of formulas which are present in the theorem that is shown. In contrast, mathematical proofs written by humans almost never are: they are highly structured due to the use of lemmas. The ASCOP-project aims at developing algorithms and software which structure and abbreviate analytic proofs by computing useful lemmas. These algorithms will be based on recent groundbreaking results establishing a new connection between proof theory and formal language theory. This connection allows the application of e cient algorithms based on formal grammars to structure and compress proofs
Clause Set Cycles and Induction
In this article we relate a family of methods for automated inductive theorem
proving based on cycle detection in saturation-based provers to well-known
theories of induction. To this end we introduce the notion of clause set cycles
-- a formalism abstracting a certain type of cyclic dependency between clause
sets. We first show that the formalism of clause set cycles is contained in the
theory of induction. Secondly we consider the relation between
clause set cycles and the theory of open induction. By providing a finite
axiomatization of a theory of triangular numbers with open induction we show
that the formalism of clause set cycles is not contained in the theory of open
induction. Furthermore we conjecture that open induction and clause set cycles
are incomparable. Finally, we transfer these results to a concrete method of
automated inductive theorem proving called the n-clause calculus
- …