452 research outputs found

    Clinical Thermoradiotherapy

    Get PDF
    A clinical trial is currently in progress to determine the efficacy of combined fractions of hyperthermia and radiation. The protocol consists of two parts. First, four fractions of microwave-induced hyperthermia (45.0° ± 0.5°C) are applied for 1 1/2 hours to the volume encompassing the tumor, each separated by 72 hours. After a one-week rest, a second series of four fractions is administered again at 72- hour intervals. Each fraction consists of a 400 rad dose of radiation followed within 20 minutes by hyperthermia (42.5 ± 0.5°C) for 1 1/2 hours. Currently, we have treated 62 patients with 82 fields with a mean follow-up time of six months to date. Total regression was observed in 60% of all cases, and partial regression in 33%; no response was seen in only 6% of all those treated. Five local and three marginal recurrences have been observed. This paper discusses details of response based on site, histology, and classification

    Metamagnetism in the 2D Hubbard Model with easy axis

    Full text link
    Although the Hubbard model is widely investigated, there are surprisingly few attempts to study the behavior of such a model in an external magnetic field. Using the Projector Quantum Monte Carlo technique, we show that the Hubbard model with an easy axis exhibits metamagnetic behavior if an external field is turned on. For the case of intermediate correlations strength UU, we observe a smooth transition from an antiferromagnetic regime to a paramagnetic phase. While the staggered magnetization will decrease linearly up to a critical field BcB_c, uniform magnetization develops only for fields higher than BcB_c.Comment: RevTeX 5 pages + 2 postscript figures (included), accepted for PRB Rapid Communication

    Cryobiopsy increases the EGFR detection rate in non-small cell lung cancer

    Get PDF
    Objectives: Detection of activating epidermal growth factor receptor (EGFR) mutation is crucial for individualized treatment of advanced non-small-cell lung cancer (NSCLC). However little is known about how biopsy technique affects the detection rate of EGFR mutations. This retrospective, single center study evaluated the detection rate of EGFR mutations in tissue obtained by bronchoscopic cryobiopsy and compared this to other standard tissue sampling techniques. Materials and methods: We retrospectively analyzed 414 patients with histologically confirmed NSCLC and known EGFR mutation status between 3/2008-7/2014. Tumor specimens obtained by tissue preserving bronchoscopic cryobiopsy were compared to those obtained by other techniques. Results and conclusion: Analysis of bronchoscopic cryobiopsy tissue detected 29 activating EGFR mutations in 27 (21.6 ) out of 125 patients, while analysis of tissue obtained by non-cryobiopsy techniques (bronchoscopic forceps biopsies, fine needle aspiration, imaging guided transthoracical and surgical procedures) detected 42 EGFR mutations in 40 (13.8 ) out of 298 patients (p < 0.05). Cryobiopsy increased detection rate of EGFR mutations in central tumors compared with forceps biopsy (19.6 versus 6.5 , p < 0.05), while an insignificant trend was detected also for peripheral tumors (33.3 versus 26.9 ). Bronchosopic cryobiopsy increases the detection rate of activating EGFR mutations in NSCLC in comparison to other tissue sampling techniques. This will help to optimize individualized treatment of patients with advanced tumors. Because of the retrospective nature of this analysis, a prospective trial is mandatory for final assessment. © 2020 The Author(s

    Flux Pinning and Phase Transitions in Model High-Temperature Superconductors with Columnar Defects

    Full text link
    We calculate the degree of flux pinning by defects in model high-temperature superconductors (HTSC's). The HTSC is modeled as a three-dimensional network of resistively-shunted Josephson junctions in an external magnetic field, corresponding to a HTSC in the extreme Type-II limit. Disorder is introduced either by randomizing the coupling between grains (Model A disorder) or by removing grains (Model B disorder). Three types of defects are considered: point disorder, random line disorder, and periodic line disorder; but the emphasis is on random line disorder. Static and dynamic properties of the models are determined by Monte Carlo simulations and by solution of the analogous coupled overdamped Josephson equations in the presence of thermal noise. Random line defects considerably raise the superconducting transition temperature Tc(B)_c(B), and increase the apparent critical current density Jc(B,T)_c(B,T), in comparison to the defect-free crystal. They are more effective in these respects than a comparable volume density of point defects, in agreement with the experiments of Civale {\it et al}. Periodic line defects commensurate with the flux lattice are found to raise Tc(B)_c(B) even more than do random line defects. Random line defects are most effective when their density approximately equals the flux density. Near Tc(B)_c(B), our static and dynamic results appear consistent with the anisotropic Bose glass scaling hypotheses of Nelson and Vinokur, but with possibly different critical indices:Comment: 10 pages, LaTeX(REVTeX v3.0, twocolumn), 11 figures (not included

    Influence of Biopsy Technique on Molecular Genetic Tumor Characterization in Non-Small Cell Lung Cancer—The Prospective, Randomized, Single-Blinded, Multicenter PROFILER Study Protocol

    Get PDF
    The detection of molecular alterations is crucial for the individualized treatment of advanced non-small cell lung cancer (NSCLC). Missing targetable alterations may have a major impact on patient’s progression free and overall survival. Although laboratory testing for molecular alterations has continued to improve; little is known about how biopsy technique affects the detection rate of different mutations. In the retrospective study detection rate of epidermal growth factor (EGFR) mutations in tissue extracted by bronchoscopic cryobiopsy (CB was significantly higher compared to other standard biopsy techniques. This prospective, randomized, multicenter, single blinded study evaluates the accuracy of molecular genetic characterization of NSCLC for different cell sampling techniques. Key inclusion criteria are suspected lung cancer or the suspected relapse of known NSCLC that is bronchoscopically visible. Patients will be randomized, either to have a CB or a bronchoscopic forceps biopsy (FB). If indicated, a transbronchial needle aspiration (TBNA) of suspect lymph nodes will be performed. Blood liquid biopsy will be taken before tissue biopsy. The primary endpoint is the detection rate of molecular genetic alterations in NSCLC, using CB and FB. Secondary endpoints are differences in the combined detection of molecular genetic alterations between FB and CB, TBNA and liquid biopsy. This trial plans to recruit 540 patients, with 178 evaluable patients per study cohort. A histopathological and molecular genetic evaluation will be performed by the affiliated pathology departments of the national network for genomic medicine in lung cancer (nNGM), Germany. We will compare the diagnostic value of solid tumor tissue, lymph node cells and liquid biopsy for the molecular genetic characterization of NSCLC. This reflects a real world clinical setting, with potential direct impact on both treatment and survival

    Care seeking and treatment of febrile children with and without danger signs of severe disease in Northern Uganda: results from three household surveys (2018-2020)

    Get PDF
    Identification, stabilization, and prompt referral of children with signs of severe febrile disease (danger signs) in rural communities are crucial for preventing complications and death from severe malaria, pneumonia, and diarrhea. We set out to determine the treatment-seeking practices and treatment patterns for children < 5 years of age with an acute febrile illness, with or without danger signs of severe disease, in a highly malaria-endemic area of northern Uganda. Three household surveys were conducted from November through December each year in 2018, 2019, and 2020. Overall, 30% of the children in the study were reported to have had a WHO-classified danger sign including convulsions, unconsciousness/unusually sleepy, inability to feed or drink, and vomiting everything. Only half of the children in this study sought care from a health provider. However, significantly more children with danger signs of severe disease sought and received treatment and diagnostics from a health provider, compared with those without danger signs (adjusted odds ratio: 1.6, 95% confidence interval: 1.2-2.0; P < 0.01). In the total population studied, care seeking in the public sector was 26% and similar to care seeking in the private sector (24%). Community health workers were used as the first source of care by 12% of the children. Approximately 38% of the children who were reported to have danger signs of severe disease requiring prompt referral and treatment did not seek care from a health provider. Understanding and addressing barriers to accessing healthcare could contribute to better treatment seeking practices

    First-Order Melting and Dynamics of Flux Lines in a Model for YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    We have studied the statics and dynamics of flux lines in a model for YBCO, using both Monte Carlo simulations and Langevin dynamics. For a clean system, both approaches yield the same melting curve, which is found to be weakly first order with a heat of fusion of about 0.02kBTm0.02 k_BT_m per vortex pancake at a field of 50kG.50 {\rm kG}. The time averaged magnetic field distribution experienced by a fixed spin is found to undergo a qualitative change at freezing, in agreement with NMR and μSR\mu {\rm SR} experiments. Melting in the clean system is accompanied by a proliferation of free disclinations which show a clear B-dependent 3D-2D crossover from long disclination lines parallel to the c-axis at low fields, to 2D ``pancake'' disclinations at higher fields. Strong point pins produce a logarithmical lnt\ln t relaxation which results from slow annealing out of disclinations in disordered samples.Comment: 31 pages, latex, revtex, 12 figures available upon request, No major changes to the original text, but some errors in the axes scale for Figures 6 and 7 were corrected(new figures available upon request), to be published in Physical Review B, July 199

    The phase diagram of high-Tc's: Influence of anisotropy and disorder

    Full text link
    We propose a phase diagram for the vortex structure of high temperature superconductors which incorporates the effects of anisotropy and disorder. It is based on numerical simulations using the three-dimensional Josephson junction array model. We support the results with an estimation of the internal energy and configurational entropy of the system. Our results give a unified picture of the behavior of the vortex lattice, covering from the very anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order melting ocurring in clean samples to the continuous transitions observed in samples with defects.Comment: 8 pages with 7 figure

    Charge-order transition in the extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the charge-order transition at zero temperature in a two-leg Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. We consider electron densities between quarter and half filling. For quarter filling and U=8t, we find evidence for a continuous phase transition between a homogeneous state at small V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge order at large V. This transition to a checkerboard charge-ordered state remains present at all larger fillings, but becomes discontinuous at sufficiently large filling. We discuss the influence of U/t on the transition and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R
    corecore