9 research outputs found

    Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture

    Get PDF
    The evolution of discontinuous gas exchange (DGE) in insects is highly controversial. Adaptive hypotheses which have obtained experimental support include a water savings mechanism for living in dry environments (hygric hypothesis), a reduction in oxidative damage due to a high-performance oxygen delivery system (oxidative damage hypothesis), and the need for steep intratracheal partial pressure gradients to exchange gases under the hypercapnic and/or hypoxic conditions potentially encountered in subterranean environments (chthonic hypothesis). However, few experimental studies have simultaneously assessed multiple competing hypotheses within a strong inference framework. Here, we present such a study at the species level for a diapausing moth pupa, Samia cynthia. Switching gas conditions from controlled normoxic, normocapnic and intermediate humidity to either high or low oxygen, high or low moisture, elevated carbon dioxide, or some combination of these, revealed that DGE was abandoned under all conditions except high oxygen, and high or low gas moisture levels. Thus, support is found for the oxidative damage hypothesis when scored as maintenance of DGE. Modulation of DGE under either dry or hyperoxic conditions suggested strong support for the oxidative damage hypothesis and some limited support for the hygric hypothesis. Therefore, this study demonstrates that the DGE can be maintained and modulated in response to several environmental variables. Further investigation is required using a strong-inference, experimental approach across a range of species from different habitats to determine how widespread the support for the oxidative damage hypothesis might be.Centre of Excellence for Invasion Biolog

    Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria

    Get PDF
    CITATION: Groenewald, B., et al. 2012. Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria. Journal of Experimental Biology, 215(13):2301-2307. doi:10.1242/jeb.070995The original publication is available at https://journals.biologists.com/jebGas exchange dynamics in insects is of fundamental importance to understanding evolved variation in breathing patterns, such as discontinuous gas exchange cycles (DGCs). Most insects do not rely solely on diffusion for the exchange of respiratory gases but may also make use of respiratory movements (active ventilation) to supplement gas exchange at rest. However, their temporal dynamics have not been widely investigated. Here, intratracheal pressure, CO2 and body movements of the desert locust Schistocerca gregaria were measured simultaneously during the DGC and revealed several important aspects of gas exchange dynamics. First, S. gregaria employs two different ventilatory strategies, one involving dorso-ventral contractions and the other longitudinal telescoping movements. Second, although a true spiracular closed (C)-phase of the DGC could be identified by means of subatmospheric intratracheal pressure recordings, some CO2 continued to be released. Third, strong pumping actions do not necessarily lead to CO2 release and could be used to ensure mixing of gases in the closed tracheal system, or enhance water vapour reabsorption into the haemolymph from fluid-filled tracheole tips by increasing the hydrostatic pressure or forcing fluid into the haemocoel. Finally, this work showed that the C-phase of the DGC can occur at any pressure. These results provide further insights into the mechanistic basis of insect gas exchange.National Research Foundationhttps://journals.biologists.com/jeb/article/215/13/2301/10912/Respiratory-dynamics-of-discontinuous-gas-exchangePublisher's versio

    Reactive oxygen species production and discontinuous gas exchange in insects

    Get PDF
    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean _V CO2 and mean ROS production indicates that higher ROS production is generally associated with lower _V CO2 . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production

    Control of discontinuous gas exchange in Samia cynthia: Effects of atmospheric oxygen, carbon dioxide and moisture

    No full text
    The evolution of discontinuous gas exchange (DGE) in insects is highly controversial. Adaptive hypotheses which have obtained experimental support include a water savings mechanism for living in dry environments (hygric hypothesis), a reduction in oxidative damage due to a high-performance oxygen delivery system (oxidative damage hypothesis), and the need for steep intratracheal partial pressure gradients to exchange gases under the hypercapnic and/or hypoxic conditions potentially encountered in subterranean environments (chthonic hypothesis). However, few experimental studies have simultaneously assessed multiple competing hypotheses within a strong inference framework. Here, we present such a study at the species level for a diapausing moth pupa, Samia cynthia. Switching gas conditions from controlled normoxic, normocapnic and intermediate humidity to either high or low oxygen, high or low moisture, elevated carbon dioxide, or some combination of these, revealed that DGE was abandoned under all conditions except high oxygen, and high or low gas moisture levels. Thus, support is found for the oxidative damage hypothesis when scored as maintenance of DGE. Modulation of DGE under either dry or hyperoxic conditions suggested strong support for the oxidative damage hypothesis and some limited support for the hygric hypothesis. Therefore, this study demonstrates that the DGE can be maintained and modulated in response to several environmental variables. Further investigation is required using a strong-inference, experimental approach across a range of species from different habitats to determine how widespread the support for the oxidative damage hypothesis might be.Articl

    Reactive oxygen species production and discontinuous gas exchange in insects

    No full text
    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean VCO2 and mean ROS production indicates that higher ROS production is generally associated with lower VCO2. Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. © 2011 The Royal Society

    The Role of the Protein Quality Control System in SBMA

    No full text

    Melatonin as Potential Targets for Delaying Ovarian Aging

    No full text
    corecore