73 research outputs found

    Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells.

    Get PDF
    In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug accumulation significantly in the cDDP-resistant cell lines but had little effect on drug accumulation in the cDDP-sensitive cell lines. DNA adduct formation, however, was significantly increased in all cell lines studied. Furthermore, ongoing formation of platinum (Pt)-DNA adducts after the end of cDDP treatment was enhanced and/or adduct removal was decreased in heated cells, resulting in relatively more DNA damage remaining at 24 h after the end of cDDP exposure. Correlation plots with survival revealed weak correlations with cellular Pt accumulation (r2 = 0.59) and initial Pt-DNA adduct formation (r2 = 0.64). Strong correlations, however, were found with Pt-DNA adducts at 6 h (r2 = 0.97) and 24 h (r2 = 0.89) after the incubation with the drug. In conclusion, the mechanism by which heat sensitizes cells for cDDP action seems to be the sum of multiple factors, which comprise heat effects on accumulation, adduct formation and adduct processing. This mechanism did not seem to differ between cDDP-sensitive and -resistant cells, emphasizing the potential of hyperthermia to reduce cDDP resistance

    Biomechanics of wheelchair turning manoeuvres: novel insights into wheelchair propulsion

    Get PDF
    IntroductionWheelchair turning biomechanics is an under researched area despite its obvious relevance to functional mobility of wheelchair users. Wheelchair turns might be linked to a higher risk of upper limb injuries due to the increased forces and torques potentially associated with asymmetric movement. Our aim was to obtain a better theoretical understanding of wheelchair turning by biomechanically analyzing turns compared to steady-state straightforward propulsion (SSSFP).MethodsTen able-bodied men received 12-min familiarization and 10 trials (in a random order) of SSSFP and multiple left and right turns around a rectangular course. A Smartwheel was mounted at the right wheel of a standard wheelchair to measure kinetic parameters during SSSFP and of the inner hand during right turns and the outer hand during left turns. A repeated measures ANOVA was used to detect differences across tasks.ResultsTwo strategies were identified: 3% demonstrated roll turns and 97% spin turns. Spin turns consisted of three phases: approach, turning and depart phase. The turning phase was accomplished by increasing peak force (72.9 ± 25.1 N vs. 43.38 ± 15.9 N in SSSFP) of the inner hand, while maintaining high push frequency of the outer hand (1.09 ± 0.20 push/s vs. 0.95 ± 0.13 push/s in SSSFP). Peak negative force and force impulse during the turning phase were much higher than SSSFP, 15.3 ± 15.7 and 4.5 ± 1.7 times higher, respectively.ConclusionThe spin turn strategy might carry an increased risk of upper limb injuries due to higher braking force and requires particular attention by rehabilitation professionals to preserve upper limb function of long-term wheelchair users

    Initial steps towards an evidence-based classification system for golfers with a physical impairment

    Get PDF
    Purpose: The present narrative review aims to make a first step towards an evidence-based classification system in handigolf following the International Paralympic Committee (IPC). It intends to create a conceptual framework of classification for handigolf and an agenda for future research. Method: Pubmed was searched on three themes: “Classification in Paralympic sports”, “Performance determining factors in golf” and “Impact of impairments on golf performance”. IPC-regulations were gathered on the IPC-website and their official publications. Results: In developing a classification system conform IPC-regulations, the main challenge is to identify the activity limitation caused by the impairment, not influenced by training, talent or motivation. Timing, accuracy and control, work per joint, range of motion, balance and flexibility are important performance determining factors in abled-bodied golf and should be considered when determining activity limitations in handigolf. Only five articles on handigolf were found, mainly addressing the asymmetric golf movement. Based on the present review, a conceptual framework for classification was developed, while a future research agenda was designated. The conceptual framework presents factors that are essential for sports performance categorized under “technology”, “interface” and “athlete characteristics”. It also includes impairment related factors essential for determining eligibility and classification. Ideally, measures to be used during classification need to be resistant against training, natural development of the athlete’s talent and motivational changes. Conclusions: The conceptual framework and a multidimensional scientific research agenda will support further development of the knowledge base required for an evidence-based classification in handigolf, including multi-level analysis of player statistics, experimental analyses of biomechanics and modeling studies.Implications for Rehabilitation The main challenge in developing an evidence-based classification system conform IPC-regulations is defining eligibility criteria and sport classes based on activity limitation caused by only the impairment and not affected by training, talent and motivation. It is expected that a transparent classification system, a lively competition and admission to the Paralympic program will further promote participation in disabled golf. Timing, accuracy and control, work per joint, range of motion, balance and flexibility are of greater importance for golf performance in able-bodied golfers and expected to be of interest to incorporate in classification for handigolf. Side and level of amputation influence activity limitation in the asymmetric golf movement, and should be incorporated in classification. The proposed conceptual framework is fundamental to the research agenda that must further generate the knowledge-base to determine activity limitations caused by different impairments in handigolf and may serve as a guideline for other Paralympic sports in the development of evidence-based classification

    Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

    Get PDF
    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed. © 2014 Springer International Publishing Switzerland

    Rapid Generation of MicroRNA Sponges for MicroRNA Inhibition

    Get PDF
    MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies

    Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines

    Get PDF
    We isolated human KB adenocarcinoma cisplatin-resistant (CP-r) cell lines with multidrug-resistance phenotypes because of reduced accumulation of cisplatin and other cytotoxic compounds such as methotrexate and heavy metals. The uptake of horseradish peroxidase (HRPO) and Texas Red dextran was decreased several-fold in KB-CP-r cells, indicating a general defect in fluid-phase endocytosis. In contrast, although EGF receptors were decreased in amount, the kinetics of EGF uptake, a marker of receptor-mediated endocytosis, was similar in sensitive and resistant cells. However, 40–60% of the 125I-EGF released into the medium after uptake into lysosomes of KB-CP-r cells was TCA precipitable as compared to only 10% released by sensitive cells. These results indicate inefficient degradation of internalised 125I-EGF in the lysosomes of KB-CP-r cells, consistent with slower processing of cathepsin L, a lysosomal cysteine protease. Treatment of KB cells by bafilomycin A1, a known inhibitor of the vacuolar proton pump, mimicked the phenotype seen in KB-CP-r cells with reduced uptake of HRPO, 125I-EGF, 14C-carboplatin, and release of TCA precipitable 125I-EGF. KB-CP-r cells also had less acidic lysosomes. KB-CP-r cells were crossresistant to Pseudomonas exotoxin, and Pseudomonas exotoxin-resistant KB cells were crossresistant to cisplatin. Since cells with endosomal acidification defects are known to be resistant to Pseudomonas exotoxin and blocking of endosomal acidification mimics the CP-r phenotype, we conclude that defective endosomal acidification may contribute to acquired cisplatin resistance

    Proteomic Analyses of Host and Pathogen Responses during Bovine Mastitis

    Get PDF
    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced
    corecore