40 research outputs found
Can optical squeezing be generated via polarization self-rotation in a thermal vapour cell?
The traversal of an elliptically polarized optical field through a thermal
vapour cell can give rise to a rotation of its polarization axis. This process,
known as polarization self-rotation (PSR), has been suggested as a mechanism
for producing squeezed light at atomic transition wavelengths. In this paper,
we show results of the characterization of PSR in isotopically enhanced
Rubidium-87 cells, performed in two independent laboratories. We observed that,
contrary to earlier work, the presence of atomic noise in the thermal vapour
overwhelms the observation of squeezing. We present a theory that contains
atomic noise terms and show that a null result in squeezing is consistent with
this theory.Comment: 10 pages, 11 figures, submitted to PRA. Please email author for a PDF
file if the article does not appear properl
Highly non-Gaussian states created via cross-Kerr nonlinearity
We propose a feasible scheme for generation of strongly non-Gaussian states
using the cross-Kerr nonlinearity. The resultant states are highly
non-classical states of electromagnetic field and exhibit negativity of their
Wigner function, sub-Poissonian photon statistics, and amplitude squeezing.
Furthermore, the Wigner function has a distinctly pronounced ``banana'' or
``crescent'' shape specific for the Kerr-type interactions, which so far was
not demonstrated experimentally. We show that creating and detecting such
states should be possible with the present technology using electromagnetically
induced transparency in a four-level atomic system in N-configuration.Comment: 12 pages, 7 figure
Towards high-speed optical quantum memories
Quantum memories, capable of controllably storing and releasing a photon, are
a crucial component for quantum computers and quantum communications. So far,
quantum memories have operated with bandwidths that limit data rates to MHz.
Here we report the coherent storage and retrieval of sub-nanosecond low
intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium
vapor. The novel memory interaction takes place via a far off-resonant
two-photon transition in which the memory bandwidth is dynamically generated by
a strong control field. This allows for an increase in data rates by a factor
of almost 1000 compared to existing quantum memories. The memory works with a
total efficiency of 15% and its coherence is demonstrated by directly
interfering the stored and retrieved pulses. Coherence times in hot atomic
vapors are on the order of microsecond - the expected storage time limit for
this memory.Comment: 13 pages, 5 figure
Propagation of Squeezed Vacuum under Electromagnetically Induced Transparency
We experimentally and theoretically analyze the transmission of
continuous-wave and pulsed squeezed vacuum through rubidium vapor under the
conditions of electromagnetically induced transparency. Frequency- and
time-domain homodyne tomography is used to measure the quadrature noise and
reconstruct the quantum states of the transmitted light. A simple theoretical
model explains the spectrum and degradation of the transmitted squeezing with
high precision
EPHA2 Is Associated with Age-Related Cortical Cataract in Mice and Humans
Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age
"Potential of waste heat recovery for automotive engines using detailed simulation - "
International audienc