10 research outputs found

    Transferrin receptor 1 mRNA is downregulated in placenta of hepcidin transgenic embryos

    Get PDF
    AbstractWe have previously shown that hepcidin transgenic embryos are severely anemic and die around birth. Here, we report that embryonic hepcidin transgene expression decreases transferrin receptor 1 (TfR1) mRNA level in placenta, as shown by cDNA microarray analysis and quantitative RT-PCR, by a mechanism which is independent of placenta iron content and iron responsive element/iron regulatory protein (IRE/IRP) activity. On the contrary, iron injections into pregnant mothers result in increased placenta iron and ferritin content, and reduced IRE binding activity of IRP1 leading to decreased TfR1 mRNA level. Taken together, these results suggest that hepcidin action on placenta is mostly through transcriptional downregulation of the iron uptake machinery

    A novel type of congenital hypochromic anemia associated with a nonsense mutation in the STEAP3/TSAP6 gene

    No full text
    International audienceSTEAP3/TSAP6 encodes a ferrireductase that is involved in the acquisition of iron by developing erythroblasts and steap3/tsap6 null-mice display severe microcytic anemia. We report a family in which 3 siblings born to healthy parents display transfusion-dependent hypochromic anemia. A nonsense STEAP3/TSAP6 was identified in the siblings at the heterozygous state. This mutation was inherited from their father while no mutation was found in their mother. A large variability of expression was found between normal alleles in a control population, confirming a previous report that STEAP3/TSAPS6 is an expressed quantitative trait locus (e-QTL). Determination of the relative allele expression showed that the "normal" allele was expressed at a significantly higher level in the father than in the affected siblings relative to the shared mutated allele. The blood level of STEAP3/TSAP6 mRNA was severely reduced in the siblings, while both parents were in the lower range of normal controls. The STEAP3/TSAP6 protein was also reduced in lymphocytic cell lines from the patients. Collectively, our data support the hypothesis that STEAP3/TSAP6 deficiency leads to severe anemia in the affected siblings and results from the combination of a mutated allele inherited from their father and a weakly expressed allele inherited from their mother

    A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload

    No full text
    The best known type of inherited hyperferritinemia not related to iron overload is the hyperferritinemia-cataract syndrome (OMIM #600886), caused by a mutation in the iron-responsive element in the 5-prime non-coding region of the ferritin light chain gene (FTL). This study describes a novel missense mutation of FTL responsible for genetic hyperferritinemia without iron overload. See related perspective article on page 307

    Wild-type and mutant ferroportins do not form oligomers in transfected cells

    No full text
    Ferroportin [FPN; Slc40a1 (solute carrier family 40, member 1)] is a transmembrane iron export protein expressed in macrophages and duodenal enterocytes. Heterozygous mutations in the FPN gene result in an autosomal dominant form of iron overload disorder, type-4 haemochromatosis. FPN mutants either have a normal iron export activity but have lost their ability to bind hepcidin, or are defective in their iron export function. The mutant protein has been suggested to act as a dominant negative over the wt (wild-type) protein by multimer formation. Using transiently transfected human epithelial cell lines expressing mouse FPN modified by the addition of a haemagglutinin or c-Myc epitope at the C-terminus, we show that the wtFPN is found at the plasma membrane and in Rab5-containing endosomes, as are the D157G and Q182H mutants. However, the delV162 mutant is mostly intracellular in HK2 cells (human kidney-2 cells) and partially addressed at the cell surface in HEK-293 cells (human embryonic kidney 293 cells). In both cell types, it is partially associated with the endoplasmic reticulum and with Rab5-positive vesicles. However, this mutant is complex-glycosylated like the wt protein. D157G and G323V mutants have a defective iron export capacity as judged by their inability to deplete the intracellular ferritin content, whereas Q182H and delV162 have normal iron export function and probably have lost their capacity to bind hepcidin. In co-transfection experiments, the delV162 mutant does not co-localize with the wtFPN, does not prevent its normal targeting to the plasma membrane and cannot be immunoprecipitated in the same complex, arguing against the formation of FPN hetero-oligomers

    Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia

    No full text
    BACKGROUND: Congenital sideroblastic anemias are rare disorders with several genetic causes; they are characterized by erythroblast mitochondrial iron overload, differ greatly in severity and some occur within a syndrome. The most common cause of non-syndromic, microcytic sideroblastic anemia is a defect in the X-linked 5-aminolevulinate synthase 2 gene but this is not always present. Recently, variations in the gene for the mitochondrial carrier SLC25A38 were reported to cause a non-syndromic, severe type of autosomal-recessive sideroblastic anemia. Further evaluation of the importance of this gene was required to estimate the proportion of patients affected and to gain further insight into the range and types of variations involved. DESIGN AND METHODS: In three European diagnostic laboratories sequence analysis of SLC25A38 was performed on DNA from patients affected by congenital sideroblastic anemia of a non-syndromic nature not caused by variations in the 5-aminolevulinate synthase 2 gene. RESULTS: Eleven patients whose ancestral origins spread across several continents were homozygous or compound heterozygous for ten different SLC25A38 variations causing premature termination of translation (p.Arg117X, p.Tyr109LeufsX43), predicted splicing alteration (c.625G>C; p.Asp209His) or missense substitution (p.Gln56Lys, p.Arg134Cys, p.Ile147Asn, p.Arg187Gln, p.Pro190Arg, p.Gly228Val, p.Arg278Gly). Only three of these variations have been described previously (p.Arg117X, p.Tyr109LeufsX43 and p.Asp209His). All new variants reported here are missense and affect conserved amino acids. Structure modeling suggests that these variants may influence different aspects of transport as described for mutations in other mitochondrial carrier disorders. CONCLUSIONS: Mutations in the SLC25A38 gene cause severe, non-syndromic, microcytic/hypochromic sideroblastic anemia in many populations. Missense mutations are shown to be of importance as are mutations that affect protein production. Further investigation of these mutations should shed light on structure-function relationships in this protein
    corecore