20 research outputs found

    Effects of buprenorphine on model development in an adjuvant-induced monoarthritis rat model

    Get PDF
    Complete Freund’s adjuvant (CFA)-induced arthritis in rats is a common animal model for studying chronic inflammatory pain. However, modelling of the disease is associated with unnecessary pain and impaired animal wellbeing, particularly in the immediate post-induction phase. Few attempts have been made to counteract these adverse effects with analgesics. The present study investigated the effect of buprenorphine on animal welfare, pain-related behaviour and model-specific parameters during the disease progression in a rat model of CFA-induced monoarthritis. The aim was to reduce or eliminate unnecessary pain in this model, in order to improve animal welfare and to avoid suffering, without compromising the quality of the model. Twenty-four male Sprague Dawley rats were injected with 20 μl of CFA into the left tibio-tarsal joint to induce monoarthritis. Rats were treated with either buprenorphine or carprofen for 15 days during the disease development, and were compared to a saline-treated CFA-injected group or a negative control group. Measurements of welfare, pain-related behaviour and clinical model-specific parameters were collected. The study was terminated after 3 weeks, ending with a histopathologic analysis. Regardless of treatment, CFA-injected rats displayed mechanical hyperalgesia and developed severe histopathological changes associated with arthritis. However, no severe effects on general welfare were found at any time. Buprenorphine treatment reduced facial pain expression scores, improved mobility, stance and lameness scores and it did not supress the CFA-induced ankle swelling, contrary to carprofen. Although buprenorphine failed to demonstrate a robust analgesic effect on the mechanical hyperalgesia in this study, it did not interfere with the development of the intended pathology

    The analgesic efficacy of morphine varies with rat strain and experimental pain model: implications for target validation efforts in pain drug discovery

    Get PDF
    BACKGROUND: Translating efficacy of analgesic drugs from animal models to humans remains challenging. Reasons are multifaceted, but lack of sufficiently rigorous preclinical study design criteria and phenotypically relevant models may be partly responsible. To begin to address this fundamental issue, we assessed the analgesic efficacy of morphine in three inbred rat strains (selected based on stress reactivity and affective/pain phenotypes), and outbred Sprague Dawley (SD) rats supplied from two vendors. METHODS: Sensitivity to morphine (0.3-6.0 mg/kg, s.c.) was evaluated in the hot plate test of acute thermal nociception, the Complete Freund's Adjuvant (CFA) model of inflammatory-induced mechanical hyperalgesia, and in a locomotor motility assay in male rats from the following strains; Lewis (LEW), Fischer (F344), Wistar Kyoto (WKY), and SD's from Envigo and Charles River. RESULTS: F344 and SD rats were similarly sensitive to morphine in hot plate and CFA-induced inflammatory hyperalgesia (Minimum Effective Dose (MED) = 3.0 mg/kg). WKY rats developed a less robust mechanical hypersensitivity after CFA injection, and were less sensitive to morphine in both pain tests (MED = 6.0 mg/kg). LEW rats were completely insensitive to morphine in the hot plate test, in contrast to the reversal of CFA-induced hyperalgesia (MED = 3.0 mg/kg). All strains exhibited a dose-dependent reduction in locomotor activity at 3.0-6.0 mg/kg. CONCLUSION: Sensory phenotyping in response to acute thermal and inflammatory-induced pain, and sensitivity to morphine in various inbred and outbred rat strains indicates that different pathophysiological mechanisms are engaged after injury. This could have profound implications for translating preclinical drug discovery efforts into pain patients. SIGNIFICANCE: The choice of rat strain used in preclinical pain research can profoundly affect the outcome of experiments in relation to (a) nociceptive threshold responses, and (b) efficacy to analgesic treatment, in assays of acute and tonic inflammatory nociceptive pain

    Stress sensitivity and cutaneous sensory thresholds before and after neuropathic injury in various inbred and outbred rat strains

    Get PDF
    Chronic pain is associated with altered affective state, stress, anxiety and depression. Conversely, stress, anxiety and depression can all modulate pain perception. The relative link between these behavioural constructs in different inbred and outbred rat strains, known to be variously hypo/hyperresponsive to stress has not been determined. Hindpaw sensory thresholds to repeated mechanical (von Frey filament and electronic Randall Selitto) and thermal (Hargreaves, cold plate and hot plate) stimulation were routinely assessed over three weeks in non-injured male rats of the following strains; WKY, LEW, F344, Hsd:SD and Crl:SD. Thereafter, threshold responses to spared nerve injury (SNI) were assessed using von Frey, pin prick and Hargreaves testing in the same strains over a three month period. Finally, anxiolytic efficacy of the benzodiazepine drug diazepam was assessed using the Elevated Plus Maze (EPM), as a surrogate index of functional plasticity of circuits involved in affective processing. Repeated nociceptive testing was associated with distinct strain-dependent changes in sensory thresholds in naïve rats; stress-hyporesponsive LEW rats presented with a mechanical/thermal hyperalgesia phenotype, whereas stress-hyperresponsive WKY rats presented with an unexpected heat/cold hypoalgesia phenotype. After SNI, LEW rats showed minimal signs of neuropathic sensitivity. Diazepam was anxiolytic in all tested strains with the exception of LEW rats reflecting distinct inherent affective processing only in this strain. The contribution of stress reactivity to nociceptive sensory profiles appears to vary in the absence or presence of neuropathic injury. Intriguingly, the functional responsiveness of affective state prior to injury may be a predisposing factor to developing chronic pain

    Effects of buprenorphine on acute pain and inflammation in the adjuvant-induced monoarthritis rat model

    Get PDF
    Background and aim: Animal modelling of arthritis is often associated with pain and suffering. Severity may be reduced with the use of analgesia which is, however, often withheld due to concerns of introducing a confounding variable. It is therefore important to design and validate pain relief protocols that reduce pain without compromising the scientific objectives. The present study evaluated the effect of buprenorphine analgesia in the immediate post-induction period of an adjuvant-induced monoarthritic rat model. The aim of this study was to extend previous work on refinement of the model by alleviating unnecessary pain. Methods: Male and female Sprague Dawley rats were injected with 20 μl of complete Freund's adjuvant (CFA) into the left ankle. Rats were treated with buprenorphine, either injected subcutaneously or ingested voluntarily, and were compared to rats given subcutaneous injections with vehicle (saline or pure nut paste) or carprofen the first three days post CFA-injection. Measurements of welfare, clinical model-specific parameters and pain-related behaviour were assessed. Results: Buprenorphine, administered either subcutaneously (0.10 or 0.15 mg/kg, twice daily) or by voluntary ingestion in nut paste (1.0 or 3.0 mg/kg, twice daily), improved mobility, stance, rearing and lameness scores significantly 7 h post CFA-injection. Mechanical hyperalgesia peaked at 7 h and was significantly lower in buprenorphine-treated animals, compared to vehicle-treated animals. Joint circumference was highest 24–72 h after CFA injection. Animals treated with buprenorphine did not decrease in joint circumference, opposite carprofen treated animals. Conclusion: Buprenorphine, administered either subcutaneously or by voluntary ingestion, provides adequate analgesia for both sexes within the first 24 h post CFA-injection. Buprenorphine treatment improved clinical scores and appeared not to suppress the inflammatory response. The present study supports previous findings that voluntarily ingested buprenorphine is an effective alternative to repeated injections

    Is there a reasonable excuse for not providing post-operative analgesia when using animal models of peripheral neuropathic pain for research purposes?

    Get PDF
    INTRODUCTION: The induction of neuropathic pain-like behaviors in rodents often requires surgical intervention. This engages acute nociceptive signaling events that contribute to pain and stress post-operatively that from a welfare perspective demands peri-operative analgesic treatment. However, a large number of researchers avoid providing such care based largely on anecdotal opinions that it might interfere with model pathophysiology in the longer term. // OBJECTIVES: To investigate effects of various peri-operative analgesic regimens encapsulating different mechanisms and duration of action, on the development of post-operative stress/welfare and pain-like behaviors in the Spared Nerve Injury (SNI)-model of neuropathic pain. // METHODS: Starting on the day of surgery, male Sprague-Dawley rats were administered either vehicle (s.c.), carprofen (5.0mg/kg, s.c.), buprenorphine (0.1mg/kg s.c. or 1.0mg/kg p.o. in Nutella®), lidocaine/bupivacaine mixture (local irrigation) or a combination of all analgesics, with coverage from a single administration, and up to 72 hours. Post-operative stress and recovery were assessed using welfare parameters, bodyweight, food-consumption, and fecal corticosterone, and hindpaw mechanical allodynia was tested for assessing development of neuropathic pain for 28 days. // RESULTS: None of the analgesic regimes compromised the development of mechanical allodynia. Unexpectedly, the combined treatment with 0.1mg/kg s.c. buprenorphine and carprofen for 72 hours and local irrigation with lidocaine/bupivacaine, caused severe adverse effects with peritonitis. This was not observed when the combination included a lower dose of buprenorphine (0.05mg/kg, s.c.), or when buprenorphine was administered alone (0.1mg/kg s.c. or 1.0mg/kg p.o.) for 72 hours. An elevated rate of wound dehiscence was observed especially in the combined treatment groups, underlining the need for balanced analgesia. Repeated buprenorphine injections had positive effects on body weight the first day after surgery, but depressive effects on food intake and body weight later during the first week. // CONCLUSION: Post-operative analgesia does not appear to affect established neuropathic hypersensitivity outcome in the SNI model

    Effects of Transdermal Fentanyl Treatment on Acute Pain and Inflammation in Rats with Adjuvant-induced Monoarthritis

    Get PDF
    Eliminating unnecessary pain is an important requirement of performing animal experimentation, including reducing and controlling pain of animals used in pain research. The goal of this study was to refine an adjuvant-induced monoarthritis model in rats by providing analgesia with a transdermal fentanyl solution (TFS). Male and female Sprague-Dawley rats, single- or pair-housed, were injected with 20 μL of complete Freund adjuvant (CFA) into the left ankle joint. CFA-injected rats treated with a single dose of transdermal fentanyl solution (0.33 or 1 mg/kg) were compared with an untreated CFA-injected group and sham groups that received either no treatment or TFS treatment (1 mg/kg) during 72 h. At the tested doses, TFS reduced mechanical hyperalgesia and improved the mobility, stance, rearing, and lameness scores at 6 h after CFA injection. Joint circumferences were not reduced by TFS treatment, and no significant differences were detected between the 2 doses of TFS, or between single- and pair-housed rats. Treatment with TFS did not appear to interfere with model development and characteristics. However, overall, the analgesic effect was transient, and several opioid-related side effects were observed

    The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury

    No full text
    Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances

    The influence of rat strain on the development of neuropathic pain and comorbid anxio-depressive behaviour after nerve injury

    Get PDF
    Back-translating the clinical manifestations of human disease burden into animal models is increasingly recognized as an important facet of preclinical drug discovery. We hypothesized that inbred rat strains possessing stress hyper-reactive-, depressive- or anxiety-like phenotypes may possess more translational value than common outbred strains for modeling neuropathic pain. Rats (inbred: LEW, WKY, F344/ICO and F344/DU, outbred: Crl:SD) were exposed to Spared Nerve Injury (SNI) and evaluated routinely for 6 months on behaviours related to pain (von Frey stimulation and CatWalk-gait analysis), anxiety (elevated plus maze, EPM) and depression (sucrose preference test, SPT). Markers of stress reactivity together with spinal/brain opioid receptor expression were also measured. All strains variously developed mechanical allodynia after SNI with the exception of stress-hyporesponsive LEW rats, despite all strains displaying similar functional gait-deficits after injury. However, affective changes reflective of anxiety- and depressive-like behaviour were only observed for F344/DU in the EPM, and for Crl:SD in SPT. Although differences in stress reactivity and opioid receptor expression occurred, overall they were relatively unaffected by SNI. Thus, anxio-depressive behaviours did not develop in all strains after nerve injury, and correlated only modestly with degree of pain sensitivity or with genetic predisposition to stress and/or affective disturbances
    corecore