18 research outputs found

    Aerobic exercise training improves not only brachial artery flow-mediated vasodilatation but also carotid artery reactivity: A randomized controlled, cross-over trial in older men.

    Get PDF
    It is well-known that aerobic exercise training beneficially affects endothelial function as measured by brachial artery flow-mediated vasodilation (FMD). This trial with older sedentary overweight and obese men, therefore, examined the effects of aerobic training on other non-invasive markers of the vasculature, which have been studied in less detail. Seventeen men (67 ± 2 years, BMI: 30.3 ± 2.8 kg/m2 ) participated in this controlled cross-over study. Study participants followed in random order a fully supervised, progressive, aerobic exercise training (three 50-min sessions each week at 70% maximal power) and a no-exercise control period for 8 weeks, separated by a 12-week wash-out period. At the end of each period, endothelial function was assessed by the carotid artery reactivity (CAR) response to a cold pressor test and FMD, and local carotid and regional aortic stiffness by the carotid-to-femoral pulse wave velocity (PWVc-f ). The retinal microvasculature, the serum lipid profile, 24-h ambulatory blood pressure, and 96-h continuous glucose concentrations were also determined. Aerobic training increased CAR from 1.78% to 4.01% (Δ2.23 percentage point [pp]; 95% CI: 0.58, 3.89 pp; p = 0.012) and FMD from 3.88% to 6.87% (Δ2.99 pp; 95% CI: 0.58, 5.41 pp; p = 0.019). The stiffness index ÎČ0 increased by 1.1 (95% CI: 0.3, 1.9; p = 0.012), while PWVc-f did not change. Retinal arteriolar width increased by 4 Όm (95% CI: 0, 7 Όm; p = 0.041). Office blood pressure decreased, but ambulatory blood pressure, and serum lipid and continuous glucose concentrations did not change. Aerobic exercise training improved endothelial function and retinal arteriolar width in older sedentary overweight and obese men, which may reduce cardiovascular risk

    Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes

    Get PDF
    Currently inherited or acquired skeletal muscle mitochondrial dysfunction is linked to dysregulated fatty acid metabolism, resulting in increased levels of intramyocellular lipids (IMCLs) and lipid intermediates, inducing insulin resistance. The present study aimed to clarify the order of changes in IMCL levels and skeletal muscle mitochondrial function during the development of type 2 diabetes in Zucker diabetic fatty (ZDF) rats. IMCL levels and skeletal muscle oxidative capacity were determined in vivo, using localized 1H magnetic resonance spectroscopy (MRS) and dynamic 31P MRS, respectively. In parallel, in vitro activities were measured from enzymes involved in fatty acid oxidation, the tricarboxylic acid cycle and the electron transport chain. Fa/fa ZDF rats were studied at 3 different ages corresponding to different stages of type 2 diabetes, whereas fa/+ rats served as controls. Fa/fa ZDF rats had higher IMCL contents than controls throughout the duration of the study. In vivo muscle oxidative capacity was not different in fa/fa animals compared to controls, and in vitro enzyme activity data suggested improved functionality of enzymes involved in fat oxidation in type 2 diabetic animals. Accordingly, we can conclude that in the ZDF rat model, type 2 diabetes develops in the absence of skeletal muscle mitochondrial dysfunction. © FASEB

    Influence of prolonged endurance cycling and recovery diet on intramuscular triglyceride content in trained males

    Get PDF
    Intramuscular triglycerides (IMTG) are assumed to form an important substrate source during prolonged endurance exercise in trained males. This study investigated the effects of endurance exercise and recovery diet on IMTG content in vastus lateralis muscle. Nine male cyclists were provided with a standardized diet for 3 days, after which they performed a 3-h exercise trial at a 55% maximum workload. Before and immediately after exercise and after 24 and 48 h of recovery, magnetic resonance spectroscopy (MRS) was performed to quantitate IMTG content. Muscle biopsies were taken after 48 h of recovery to determine IMTG content by using quantitative fluorescence microscopy. The entire procedure was performed two times; in one trial, a normal diet containing 39% energy (En%) as fat was provided (NF) and in the other a typical carbohydraterich athlete's diet (LF: 24 En% fat) was provided. During exercise, IMTG content decreased by 21.4 × 3.1%. During recovery, IMTG content increased significantly in the NF trial only, reaching preexercise levels within 48 h. In accord with MRS, fluorescence microscopy showed significantly higher IMTG content in the NF compared with the LF trial, with differences restricted to the type I muscle fibers (2.1 × 0.2 vs. 1.4 × 0.2% area lipid staining, respectively). In conclusion, IMTG content in the vastus lateralis muscle declines significantly during prolonged endurance exercise in male cyclists. When a normal diet is used, IMTG contents are subsequently repleted within 48 h of postexercise recovery. In contrast, IMTG repletion is impaired substantially when a typical, carbohydrate-rich athlete's diet is used. Data obtained by quantitative fluorescence microscopy correspond well with MRS results, implying that both are valid methods to quantify IMTG content

    Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects

    Get PDF
    Aims/hypothesis: Mitochondrial dysfunction and increased intramyocellular lipid (IMCL) content have both been implicated in the development of insulin resistance and type 2 diabetes mellitus, but the relative contributions of these two factors in the aetiology of diabetes are unknown. As obesity is an independent determinant of IMCL content, we examined mitochondrial function and IMCL content in overweight type 2 diabetes patients and BMI-matched normoglycaemic controls. Methods: In 12 overweight type 2 diabetes patients and nine controls with similar BMI (29.4 ± 1 and 29.3 ± 0.9 kg/m 2 respectively) in vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time (PCr half-time) immediately after exercise, using phosphorus-31 magnetic resonance spectroscopy. IMCL content was determined by proton magnetic resonance spectroscopic imaging and insulin sensitivity was measured with a hyperinsulinaemic-euglycaemic clamp. Results: The PCr half-time was 45% longer in diabetic patients compared with controls (27.3 ± 3.5 vs 18.7 ± 0.9 s, p < 0.05), whereas IMCL content was similar (1.37 ± 0.30 vs 1.25 ± 0.22% of the water resonance), and insulin sensitivity was reduced in type 2 diabetes patients (26.0 ± 2.2 vs 18.9 ± 2.3 ”mol min-1 kg-1, p < 0.05 [all mean ± SEM]). PCr half-time correlated positively with fasting plasma glucose (r2 = 0.42, p < 0.01) and HbA1c (r 2 = 0.48, p < 0.05) in diabetic patients. Conclusions/ interpretation: The finding that in vivo mitochondrial function is decreased in type 2 diabetes patients compared with controls whereas IMCL content is similar suggests that low mitochondrial function is more strongly associated with insulin resistance and type 2 diabetes than a high IMCL content per se. Whether low mitochondrial function is a cause or consequence of the disease remains to be investigated. © 2006 Springer-Verlag
    corecore