9,231 research outputs found
Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing
Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning
Restricted Wiedemann-Franz law and vanishing thermoelectric power in one-dimensional conductors
In one-dimensional (1D) conductors with linear E-k dispersion (Dirac systems)
intrabranch thermalization is favored by elastic electron-electron interaction
in contrast to electron systems with a nonlinear (parabolic) dispersion. We
show that under external electric fields or thermal gradients the carrier
populations of different branches, treated as Fermi gases, have different
temperatures as a consequence of self-consistent carrier-heat transport.
Specifically, in the presence of elastic phonon scattering, the Wiedemann-Franz
law is restricted to each branch with its specific temperature and is
characterized by twice the Lorenz number. In addition thermoelectric power
vanishes due to electron-hole symmetry, which is validated by experiment.Comment: 10 pages, 2 figure
Photoemission induced gating of topological insulator
The recently discovered topological insulators exhibit topologically
protected metallic surface states which are interesting from the fundamental
point of view and could be useful for various applications if an appropriate
electronic gating can be realized. Our photoemission study of Cu intercalated
Bi2Se3 shows that the surface states occupancy in this material can be tuned by
changing the photon energy and understood as a photoemission induced gating
effect. Our finding provides an effective tool to investigate the new physics
coming from the topological surface states and suggests the intercalation as a
recipe for synthesis of the material suitable for electronic applications.Comment: + resistivity data and some discussio
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Status of neutrino astronomy
Astrophysical neutrinos can be produced in proton interactions of charged
cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in
balloon, satellite and air shower experiments every day, from below 1e9 eV up
to macroscopic energies of 1e21 eV. The observation of different photon fields
has been done ever since, today with detections ranging from radio wavelengths
up to very high-energy photons in the TeV range. The leading question for
neutrino astronomers is now which sources provide a combination of efficient
proton acceleration with sufficiently high photon fields or baryonic targets at
the same time in order to produce a neutrino flux that is high enough to exceed
the background of atmospheric neutrinos. There are only two confirmed
astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit
and emitted neutrinos at MeV energies. The aim of large underground Cherenkov
telescopes like IceCube and KM3NeT is the detection of neutrinos at energies
above 100 GeV. In this paper, recent developments of neutrino flux modeling for
the most promising extragalactic sources, gamma ray bursts and active galactic
nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4
figures, 1 tabl
Evidence for Ballistic Thermal Conduction in the One-Dimensional S=1/2 Heisenberg Antiferromagnetic Spin System Sr2CuO3
We have measured the thermal conductivity of the one-dimensional (1D) S=1/2
Heisenberg antiferromagnetic spin system of Sr2Cu1-xPdxO3 single crystals
including nonmagnetic impurities of Pd2+. It has been found that the mean free
path of spinons along the 1D spin chain at low temperatures is very close to
the average length of finite spin chains between spin defects estimated from
the magnetic susceptibility measurements. This proves that the thermal
conduction due to spinons at low temperatures in Sr2CuO3 is ballistic as
theoretically expected [Zotos et al.: Phys. Rev. Lett. 55 (1997) 11029]
High Energy Neutrinos: Sources and Fluxes
We discuss briefly the potential sources of high energy astrophysical
neutrinos and show estimates of the neutrino fluxes that they can produce. A
special attention is paid to the connection between the highest energy cosmic
rays and astrophysical neutrinos.Comment: 7 pages, 2 figures, submitted to the Proceedings of TAUP 2005
workshop, corrected left panel of figure
Molecular double core-hole electron spectroscopy for chemical analysis
We explore the potential of double core hole electron spectroscopy for
chemical analysis in terms of x-ray two-photon photoelectron spectroscopy
(XTPPS). The creation of deep single and double core vacancies induces
significant reorganization of valence electrons. The corresponding relaxation
energies and the interatomic relaxation energies are evaluated by CASSCF
calculations. We propose a method how to experimentally extract these
quantities by the measurement of single and double core-hole ionization
potentials (IPs and DIPs). The influence of the chemical environment on these
DIPs is also discussed for states with two holes at the same atomic site and
states with two holes at two different atomic sites. Electron density
difference between the ground and double core-hole states clearly shows the
relaxations accompanying the double core-hole ionization. The effect is also
compared with the sensitivity of single core hole ionization potentials (IPs)
arising in single core hole electron spectroscopy. We have demonstrated the
method for a representative set of small molecules LiF, BeO, BF, CO, N2, C2H2,
C2H4, C2H6, CO2 and N2O. The scalar relativistic effect on IPs and on DIPs are
briefly addressed.Comment: 35 pages, 6 figures. To appear in J. Chem. Phys
Non-dissipative Thermal Transport and Magnetothermal Effect for the Spin-1/2 Heisenberg Chain
Anomalous magnetothermal effects are discussed in the spin-1/2 Heisenberg
chain. The energy current is related to one of the non-trivial conserved
quantities underlying integrability and therefore both the diagonal and off
diagonal dynamical correlations of spin and energy current diverge. The
energy-energy and spin-energy current correlations at finite temperatures are
exactly calculated by a lattice path integral formulation. The low-temperature
behavior of the thermomagnetic (magnetic Seebeck) coefficient is also
discussed. Due to effects of strong correlations, we observe the magnetic
Seebeck coefficient changes sign at certain interaction strengths and magnetic
fields.Comment: 4 pages, references added, typos corrected, Conference proceedings of
SPQS 2004, Sendai, Japa
- …