1,098 research outputs found
Determination of the Coherence Length and the Cooper-Pair Size in Unconventional Superconductors by Tunnelling Spectroscopy
The main purpose of the paper is to discuss a possibility of the
determination of the values of the coherence length and the Cooper-pair size in
unconventional superconductors by using tunnelling spectroscopy. In the mixed
state of type-II superconductors, an applied magnetic field penetrates the
superconductor in the form of vortices which form a regular lattice. In
unconventional superconductors, the inner structure of a vortex core has a
complex structure which is determined by the order parameter of the
superconducting state and by the pairing wavefunction of the Cooper pairs. In
clean superconductors, the spatial variations of the order parameter and the
pairing wavefunction occur over the distances of the order of the coherence
length and the Cooper-pair size, respectively. Therefore, by performing
tunnelling spectroscopy along a line passing through a vortex core, one is
able, in principle, to estimate the values of the coherent length and the
Cooper-pair size.Comment: 13 pages, including 17 figure
Effects of gap anisotropy upon the electronic structure around a superconducting vortex
An isolated single vortex is considered within the framework of the
quasiclassical theory. The local density of states around a vortex is
calculated in a clean type II superconductor with an anisotropy. The anisotropy
of a superconducting energy gap is crucial for bound states around a vortex. A
characteristic structure of the local density of states, observed in the
layered hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy
(STM), is well reproduced if one assumes an anisotropic s-wave gap in the
hexagonal plane. The local density of states (or the bound states) around the
vortex is interpreted in terms of quasiparticle trajectories to facilitate an
understanding of the rich electronic structure observed in STM experiments. It
is pointed out that further fine structures and extra peaks in the local
density of states should be observed by STM.Comment: 11 pages, REVTeX; 20 PostScript figures; An Animated GIFS file for
the star-shaped vortex bound states is available at
http://mp.okayama-u.ac.jp/~hayashi/vortex.htm
A Self-Consistent Microscopic Theory of Surface Superconductivity
The electronic structure of the superconducting surface sheath in a type-II
superconductor in magnetic fields is calculated
self-consistently using the Bogoliubov-de Gennes equations. We find that the
pair potential exhibits pronounced Friedel oscillations near the
surface, in marked contrast with the results of Ginzburg-Landau theory. The
role of magnetic edge states is emphasized. The local density of states near
the surface shows a significant depletion near the Fermi energy due to the
development of local superconducting order. We suggest that this structure
could be unveiled by scanning-tunneling microscopy studies performed near the
edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende
Relation between Vortex core charge and Vortex Bound States
Spatially inhomogeneous electron distribution around a single vortex is
discussed on the basis of the Bogoliubov-de Gennes theory. The spatial
structure and temperature dependence of the electron density around the vortex
are presented. A relation between the vortex core charge and the vortex bound
states (or the Caroli-de Gennes-Matricon states) is pointed out. Using the
scanning tunneling microscope, information on the vortex core charge can be
extracted through this relation.Comment: 5 pages, 3 figures; minor changes; Version to appear in JPSJ 67,
No.10, 199
Quasiparticles of d-wave superconductors in finite magnetic fields
We study quasiparticles of d-wave superconductors in the vortex lattice by
self-consistently solving the Bogoliubov-de Gennes equations. It is found for a
pure state that: (i) low-energy quasiparticle bands in the
magnetic Brillouin zone have rather large dispersion even in low magnetic
fields, indicating absense of bound states for an isolated vortex; (ii) in
finite fields with small, the calculated tunneling conductance at
the vortex core shows a double-peak structure near zero bias, as qualitatively
consistent with the STM experiment by Maggio-Aprile et al. [Phys. Rev. Lett.
{\bf 75} (1995) 2754]. We also find that mixing of a - or an s-wave
component, if any, develops gradually without transitions as the field is
increased, having little effect on the tunneling spectra.Comment: 4 pages, 4 figures, LaTe
Evidence for coexistence of the superconducting gap and the pseudo - gap in Bi-2212 from intrinsic tunneling spectroscopy
We present intrinsic tunneling spectroscopy measurements on small
BiSrCaCuO mesas. The tunnel conductance curves show both
sharp peaks at the superconducting gap voltage and broad humps representing the
-axis pseudo-gap. The superconducting gap vanishes at , while the
pseudo-gap exists both above and below . Our observation implies that the
superconducting and pseudo-gaps represent different coexisting phenomena.Comment: 5 pages, 4 figure
Vortex structure in -wave superconductors
Vortex structure of pure -wave superconductors is
microscopically analyzed in the framework of the quasi-classical Eilenberger
equations. Selfconsistent solution for the -wave pair potential is obtained
for the first time in the case of an isolated vortex. The vortex core
structure, i.e., the pair potential, the supercurrent and the magnetic field,
is found to be fourfold symmetric even in the case that the mixing of -wave
component is absent. The detailed temperature dependences of these quantities
are calculated. The fourfold symmetry becomes clear when temperature is
decreased. The local density of states is calculated for the selfconsistently
obtained pair potential. From the results, we discuss the flow trajectory of
the quasiparticles around a vortex, which is characteristic in the
-wave superconductors. The experimental relevance of our results
to high temperature superconductors is also given.Comment: 22 pages, RevTex, 23 figures available upon reques
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
Expansion of the Vortex Cores in YBa2Cu3O6.95 at Low Magnetic Fields
Muon spin rotation spectroscopy has been used to measure the effective size
of the vortex cores in optimally doped YBa2Cu3O6.95 as a function of
temperature and magnetic field deep in the superconducting state. While the
core size at H=2T is close to 20 angstroms and consistent with that measured by
STM at 6T, we find a striking increase in the core size at lower magnetic
fields, where it approaches an extraordinarily large value of about 100
angstroms. This suggests that the average value of the superconducting
coherence length in cuprate superconductors may be larger than previously
thought at low magnetic fields.Comment: 9 pages, 4 figures, 1 text fil
Flux-Induced Vortex in Mesoscopic Superconducting Loops
We predict the existence of a quantum vortex for an unusual situation. We
study the order parameter in doubly connected superconducting samples embedded
in a uniform magnetic field. For samples with perfect cylindrical symmetry, the
order parameter has been known for long and no vortices are present in the
linear regime. However, if the sample is not symmetric, there exist ranges of
the field for which the order parameter vanishes along a line, parallel to the
field. In many respects, the behavior of this line is qualitatively different
from that of the vortices encountered in type II superconductivity. For samples
with mirror symmetry, this flux-induced vortex appears at the thin side for
small fluxes and at the opposite side for large fluxes. We propose direct and
indirect experimental methods which could test our predictions.Comment: 6 pages, Latex, 4 figs., uses RevTex, extended to situations far from
cylindrical symmetr
- …