169 research outputs found

    Aligning the Measurement of Microbial Diversity with Macroecological Theory

    Get PDF
    The number of microbial operational taxonomic units (OTUs) within a community is akin to species richness within plant/animal (“macrobial”) systems. A large literature documents OTU richness patterns, drawing comparisons to macrobial theory. There is, however, an unrecognized fundamental disconnect between OTU richness and macrobial theory: OTU richness is commonly estimated on a per-individual basis, while macrobial richness is estimated per-area. Furthermore, the range or extent of sampled environmental conditions can strongly influence a study's outcomes and conclusions, but this is not commonly addressed when studying OTU richness. Here we (i) propose a new sampling approach that estimates OTU richness per-mass of soil, which results in strong support for species energy theory, (ii) use data reduction to show how support for niche conservatism emerges when sampling across a restricted range of environmental conditions, and (iii) show how additional insights into drivers of OTU richness can be generated by combining different sampling methods while simultaneously considering patterns that emerge by restricting the range of environmental conditions. We propose that a more rigorous connection between microbial ecology and macrobial theory can be facilitated by exploring how changes in OTU richness units and environmental extent influence outcomes of data analysis. While fundamental differences between microbial and macrobial systems persist (e.g., species concepts), we suggest that closer attention to units and scale provide tangible and immediate improvements to our understanding of the processes governing OTU richness and how those processes relate to drivers of macrobial species richness

    Deciphering ocean carbon in a changing world

    Get PDF
    Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 3143-3151, doi:10.1073/pnas.1514645113.Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth, comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members of the ocean microbiome that produce and consume them. In the past, these connections have eluded clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms. Emerging tools in analytical chemistry, microbiology and informatics are breaking down the barriers to a fuller appreciation of these connections. Here we highlight questions being addressed using recent methodological and technological developments in those fields and consider how these advances are transforming our understanding of some of the most important reactions of the marine carbon cycle.Support was provided by National Science Foundation grants OCE1356010, OCE1154320, and OCE1356890, and Gordon and Betty Moore Foundation Grant #3304

    Regional and scale-specific effects of land use on amphibian diversity [poster]

    Get PDF
    Background/Question/Methods Habitat loss and degradation influence amphibian distributions and are important drivers of population declines. Our previous research demonstrated that road disturbance, development and wetland area consistently influence amphibian richness across regions of the U.S. Here, we examined the relative importance of these factors in different regions and at multiple spatial scales. Understanding the scales at which habitat disturbance may be affecting amphibian distributions is important for conservation planning. Specifically, we asked: 1) Over what spatial scales do distinct landscape features affect amphibian richness? and 2) Do road types (non-rural and rural) have similar effects on amphibian richness? This is the second year of a collaborative, nationwide project involving 11 U.S. colleges integrated within undergraduate biology curricula. We summarized North American Amphibian Monitoring Program data in 13 Eastern and Central U.S states and used geographic information systems to extract landscape data for 471 survey locations. We developed models to quantify the influence of landscape variables on amphibian species richness and site occupancy across five concentric buffers ranging from 300m to 10,000m. Results/Conclusions Across spatial scales, development, road density and agriculture were the best predictors of amphibian richness and site occupancy by individual species. Across regions, we found that scale did not exert a large influence on how landscape features influenced amphibian richness as effects were largely comparable across buffers. However, development and percent impervious surface had stronger influence on richness at smaller spatial scales. Richness was lower at survey locations with higher densities of non-rural and rural roads, and non-rural road density had a larger negative effect at smaller scales. Within regions, landscape features driving patterns of species richness varied. The scales at which these factors were associated with richness were highly variable within regions, suggesting the scale effects may be region specific. Our project demonstrates that networks of undergraduate students can collaborate to compile and analyze large ecological data sets, while engaging students in authentic and inquiry-based learning in landscape-scale ecology

    An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?

    Get PDF
    High-resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive-ion and negative-ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative- and positive-ion modes over a wide range of m/z values and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance-weighted average indices (H/C, O/C, aromaticity, and m/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments

    Adjuvanted Fusion Protein Vaccine Induces Durable Immunity to Onchocerca volvulus in Mice and Non-Human Primates

    Get PDF
    Onchocerciasis remains a debilitating neglected tropical disease. Due to the many challenges of current control methods, an effective vaccine against the causative agent Onchocerca volvulus is urgently needed. Mice and cynomolgus macaque non-human primates (NHPs) were immunized with a vaccine consisting of a fusion of two O. volvulus protein antigens, Ov-103 and Ov-RAL-2 (Ov-FUS-1), and three different adjuvants: Advax-CpG, alum, and AlT4. All vaccine formulations induced high antigen-specific IgG titers in both mice and NHPs. Challenging mice with O. volvulus L3 contained within subcutaneous diffusion chambers demonstrated that Ov-FUS-1/Advax-CpG-immunized animals developed protective immunity, durable for at least 11 weeks. Passive transfer of sera, collected at several time points, from both mice and NHPs immunized with Ov-FUS-1/Advax-CpG transferred protection to naïve mice. These results demonstrate that Ov-FUS-1 with the adjuvant Advax-CpG induces durable protective immunity against O. volvulus in mice and NHPs that is mediated by vaccine-induced humoral factors
    corecore