45 research outputs found

    The Evolution of Modern North Carolina Environmental and Conservation Policy Legislation

    Get PDF
    This essay ... will trace the evolution and legislative history of modern environmental policy declarations and their interaction with earlier conservation policy declarations. It will also examine two topics that illustrate the evolution of environmental policy through legislation on subjects that are important elements of environmental law: interbasin transfers of water and intergovernmental pollution control law (the Hardison Amendments ). These two topics were selected to illustrate policy developments reflected in the legislation itself rather than in policy declarations because each of them has had significant legal and political consequences

    The Evolution of Modern North Carolina Environmental and Conservation Policy Legislation

    Get PDF
    This essay ... will trace the evolution and legislative history of modern environmental policy declarations and their interaction with earlier conservation policy declarations. It will also examine two topics that illustrate the evolution of environmental policy through legislation on subjects that are important elements of environmental law: interbasin transfers of water and intergovernmental pollution control law (the Hardison Amendments ). These two topics were selected to illustrate policy developments reflected in the legislation itself rather than in policy declarations because each of them has had significant legal and political consequences

    Observation of the rare <tex>B_{S}^{0}\rightarrow\mu^{+}\mu^{-}$</tex> decay from the combined analysis of CMS and LHCb data

    No full text

    Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (|y| < 0.7) is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient (v2) represents the elliptic flow. The v2 coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum (pT) intervals 0.5-13 GeV/c and 0.5-8 GeV/c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v2 of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9σ in the interval 2< pT < 2.5 GeV/c in semi-central collisions (20-40%). The value of v2 decreases towards more central collisions at low and intermediate pT (0.5 < pT < 3 GeV/c). The v2 of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium

    Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The pseudorapidity density of charged particles (dNch/dη) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of sNN−−−√ = 5.02 TeV. It increases with centrality and reaches a value of 1943±54 in |η|<0.5 for the 5% most central collisions. A rise in dNch/dη as a function of sNN−−−√ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of dNch/dη as a function of the average number of participant nucleons, ⟨Npart⟩, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in 2⟨Npart⟩⟨dNch/dη⟩ from sNN−−−√ = 2.76 TeV to sNN−−−√ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions

    Correlated event-by-event fluctuations of flow harmonics in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from non-flow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the centre-of-mass energy per nucleon pair of sNN−−−√=2.76 TeV by the ALICE experiment at the Large Hadron Collider (LHC). The centrality dependence of correlation between event-by-event fluctuations of the elliptic, v2, and quadrangular, v4, flow harmonics, as well as of anti-correlation between v2 and triangular, v3, flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry-dominated (in mid-central collisions) and fluctuation-dominated (in the most central collisions). Comparisons are made to predictions from MC-Glauber, viscous hydrodynamics, AMPT and HIJING models. Together with the existing measurements of individual flow harmonics the presented results provide further constraints on initial conditions and the transport properties of the system produced in heavy-ion collisions

    Measurement of transverse energy at midrapidity in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (η), ⟨dET/dη⟩, in 0-5% central collisions is 1737 ± 6(stat.) ± 97(sys.) GeV. We find a similar centrality dependence of the shape of ⟨dET/dη⟩ as a function of the number of participating nucleons to that seen at lower energies. The growth in ⟨dET/dη⟩ at the LHC sNN−−−√ exceeds extrapolations of low energy data. We observe a nearly linear scaling of ⟨dET/dη⟩ with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0-5% central Pb-Pb collisions at sNN−−−√ = 2.76 TeV is 12.3 ± 1.0 GeV/fm3\xspace and that the energy density at the most central 80 fm2 of the collision is at least 21.5 ± 1.7 GeV/fm3. This is roughly 2.3 times that observed in 0-5% central Au-Au collisions at sNN−−−√ = 200 GeV

    Charge-dependent flow and the search for the Chiral Magnetic Wave in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the LHC, and discuss the implications for observation of local parity violation and the Chiral Magnetic Wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positive and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow
    corecore