189 research outputs found

    Tracked to protect - Spatiotemporal dynamics of recreational boating in sensitive marine natural areas

    Get PDF
    In many coastal areas, high numbers of recreationists may exceed ecological capacities. Careful monitoring of visitor flows is a first prerequisite for coastal area management. We show how AIS ship data can be translated into interpretable information on recreational boats and investigate whether AIS can provide monitoring information when compared to nature conservation policy targets. In the Wadden Sea UNESCO World Heritage Site we used nearly 9 million data points to create spatiotemporal patterns for the 2018 recreation season. We combined this with shipping lanes and bathymetry data and compared the resulting patterns with nature protection regulations. Our results show that most of the traffic is concentrated around tidal channels. We also show that exceeding speed limits is not predominant behaviour, but the effect of speeding on birds and seals might be more severe than the data suggests. We mapped favourite tidal flat moor activities, and observed where this occurs in Marine Protected Areas. We conclude that AIS analysis can provide valuable recreational boating monitoring, relevant to sensitive coastal area management in the entire Dutch Wadden Sea for the full recreational season. Broader integration of AIS with radar data and ecological data can add to the power of using AIS

    Spin-Imbalance and Magnetoresistance in Ferromagnet/Superconductor/Ferromagnet Double Tunnel Junctions

    Full text link
    We theoretically study the spin-dependent transport in a ferromagnet/super- conductor/ferromagnet double tunnel junction. The tunneling current in the antiferromagnetic alignment of the magnetizations gives rise to a spin imbalance in the superconductor. The resulting nonequilibrium spin density strongly suppresses the superconductivity with increase of bias voltage and destroys it at a critical voltage Vc. The results provide a new method not only for measuring the spin polarization of ferromagnets but also for controlling superconductivity and tunnel magnetoresistance (TMR) by applying the bias voltage.Comment: 4pages, to be published in Phys. Rev. Let

    Self-consistent scattering description of transport in normal-superconductor structures

    Full text link
    We present a scattering description of transport in several normal-superconductor structures. We show that the related requirements of self-consistency and current conservation introduce qualitative changes in the transport behavior when the current in the superconductor is not negligible. The energy thresholds for quasiparticle propagation in the superconductor are sensitive to the existence of condensate flow (vs≠0v_s\neq 0). This dependence is responsible for a rich variety of transport regimes, including a voltage range in which only Andreev transmission is possible at the interfaces, and a state of gapless superconductivity which may survive up to high voltages if temperature is low. The two main effects of current conservation are a shift towards lower voltages of the first peak in the differential conductance and an enhancement of current caused by the greater availability of charge transmitting scattering channels.Comment: 31 pages, 10 PS figures, Latex file, psfig.sty file is added. To appear in Phys. Rev. B (Jan 97

    Giant Josephson current through a single bound state in a superconducting tunnel junction

    Full text link
    We study the microscopic structure of the Josephson current in a single-mode tunnel junction with a wide quasiclassical tunnel barrier. In such a junction each Andreev bound state carries a current of magnitude proportional to the {\em amplitude} of the normal electron transmission through the junction. Tremendous enhancement of the bound state current is caused by the resonance coupling of superconducting bound states at both superconductor-insulator interfaces of the junction. The possibility of experimental observation of the single bound state current is discussed.Comment: 11 pages, [aps,preprint]{revtex

    Inherent thermometry in a hybrid superconducting tunnel junction

    Full text link
    We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed

    Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems

    Full text link
    We calculate the current and the spin-torque in small symmetric double tunnel barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems. Spin-accumulation on the superconductor governs the transport properties when the spin-flip relaxation time is longer than the transport dwell time. In the elastic transport regime, it is demonstrated that the relative change in the current (spin-torque) for F-S-F systems equals the relative change in the current (spin-torque) for F-N-F systems upon changing the relative magnetization direction of the two ferromagnets. This differs from the results in the inelastic transport regime where spin-accumulation suppresses the superconducting gap and dramatically changes the magnetoresistance [S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The experimental relevance of the elastic and inelastic transport regimes, respectively, as well as the reasons for the change in the transport properties are discussed.Comment: 7 page

    First-principles study of nucleation, growth, and interface structure of Fe/GaAs

    Full text link
    We use density-functional theory to describe the initial stages of Fe film growth on GaAs(001), focusing on the interplay between chemistry and magnetism at the interface. Four features appear to be generic: (1) At submonolayer coverages, a strong chemical interaction between Fe and substrate atoms leads to substitutional adsorption and intermixing. (2) For films of several monolayers and more, atomically abrupt interfaces are energetically favored. (3) For Fe films over a range of thicknesses, both Ga- and As-adlayers dramatically reduce the formation energies of the films, suggesting a surfactant-like action. (4) During the first few monolayers of growth, Ga or As atoms are likely to be liberated from the interface and diffuse to the Fe film surface. Magnetism plays an important auxiliary role for these processes, even in the dilute limit of atomic adsorption. Most of the films exhibit ferromagnetic order even at half-monolayer coverage, while certain adlayer-capped films show a slight preference for antiferromagnetic order.Comment: 11 two-column pages, 12 figures, to appear in Phys. Rev.
    • …
    corecore