3 research outputs found

    Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon

    Get PDF
    The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia

    Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon

    No full text
    The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia

    Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon.

    No full text
    International audienceThe zebrafish has become a new model for adult neurogenesis, owing to its abundant neurogenic areas in most brain subdivisions. Radial glia-like cells, actively proliferating cells, and label-retaining progenitors have been described in these areas. In the telencephalon, this complexity is enhanced by an organization of the ventricular zone (VZ) in fast and slow-dividing domains, suggesting the existence of heterogeneous progenitor types. In this work, we studied the expression of various transgenic or immunocytochemical markers for glial cells (gfap:gfp, cyp19a1b:gfp, BLBP, and S100beta), progenitors (nestin:gfp and Sox2), and neuroblasts (PSA-NCAM) in cycling progenitors of the adult zebrafish telencephalon (identified by expression of proliferating cell nuclear antigen (PCNA), MCM5, or bromodeoxyuridine incorporation). We demonstrate the existence of distinct populations of dividing cells at the adult telencephalic VZ. Progenitors of the overall slow-cycling domains express high levels of Sox2 and nestin:gfp as well as all glial markers tested. In contrast, domains with an overall fast division rate are characterized by low or missing expression of glial markers. PCNA-positive cells in fast domains further display a morphology distinct from radial glia and co-express PSA-NCAM, suggesting that they are early neuronal precursors. In addition, the VZ contains cycling progenitors that express neither glial markers nor nestin:gfp, but are positive for Sox2 and PSA-NCAM, identifying them as committed neuroblasts. On the basis of the marker gene expression and distinct cell morphologies, we propose a classification for the dividing cell states at the zebrafish adult telencephalic VZ
    corecore