5 research outputs found

    A Transgenic Model Reveals the Role of Klotho in Pancreatic Cancer Development and Paves the Way for New Klotho-Based Therapy

    Get PDF
    Klotho; C脿ncer de p脿ncrees; Supressor del tumorKlotho; C谩ncer de p谩ncreas; Supresor de tumorKlotho; Pancreatic cancer; Tumor suppressorKlotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC.This project was funded by the The Sami and Tova Sagol Foundation for the Study of Aging, the Margaret Stultz foundation for Pancreatic Cancer Research, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministerio de Ciencia e Innovaci贸n 鈥楶royectos I+D+I 2019, to M.C., (grant number PID2019-104034RB-I00) and by the TASMC excellence fund. to I.W

    Hsp70鈥揃ag3 Module Regulates Macrophage Motility and Tumor Infiltration via Transcription Factor LITAF and CSF1

    No full text
    The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70鈥揃ag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70鈥揃ag3鈥揕ITAF鈥揅SF1 pathway that controls macrophage motility and tumor infiltration

    A Cell Double-Barcoding System for Quantitative Evaluation of Primary Tumors and Metastasis in Animals That Uncovers Clonal-Specific Anti-Cancer Drug Effects

    No full text
    Imaging in monitoring metastasis in mouse models has low sensitivity and is not quantitative. Cell DNA barcoding, demonstrating high sensitivity and resolution, allows monitoring effects of drugs on the number of tumor and metastatic clones. However, this technology is not suitable for comparison of sizes of metastatic clones in different animals, for example, drug treated and untreated, due to high biological and technical variability upon tumor and metastatic growth and isolation of barcodes from tissue DNA. However, both numbers of clones and their sizes are critical parameters for analysis of drug effects. Here we developed a modification of the barcoding approach for monitoring drug effects on tumors and metastasis that is quantitative, highly sensitive and highly reproducible. This novel cell double-barcoding system allows simultaneously following the fate of two or more cell variants or cell lines in xenograft models in vivo, and also following the fates of individual clones within each of these populations. This system allows comparing effects of drugs on different cell populations and thus normalizing drug effects by drug-resistant lines, which corrects for both biological and technical variabilities and significantly increases the reproducibility of results. Using this barcoding system, we uncovered that effects of a novel DYRK1B kinase inhibitor FX9847 on primary tumors and metastasis is clone-dependent, while a distinct drug osimertinib demonstrated clone-independent effects on cancer cell populations. Overall, a cell double-barcoding approach can significantly enrich our understanding of drug effects in basic research and preclinical studies

    Search for Synergistic Drug Combinations to Treat Chronic Lymphocytic Leukemia

    No full text
    Finding synergistic drug combinations is an important area of cancer research. Here, we sought to rationally design synergistic drug combinations with an inhibitor of BTK kinase, ibrutinib, which is used for the treatment of several types of leukemia. We (a) used a pooled shRNA screen to identify genes that protect cells from the drug, (b) identified protective pathways via bioinformatics analysis of these gene sets, and (c) identified drugs that inhibit these pathways. Based on this analysis, we established that inhibitors of proteasome and mTORC1 could synergize with ibrutinib both in vitro and in vivo. We suggest that FDA-approved inhibitors of these pathways could be effectively combined with ibrutinib for the treatment of chronic lymphocytic leukemia (CLL)

    A Transgenic Model Reveals the Role of Klotho in Pancreatic Cancer Development and Paves the Way for New Klotho-Based Therapy

    Get PDF
    Klotho is an anti-aging transmembrane protein, which can be shed and can function as a hormone. Accumulating data indicate that klotho is a tumor suppressor in a wide array of malignancies, and designate the subdomain KL1 as the active region of the protein towards this activity. We aimed to study the role of klotho as a tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Bioinformatics analyses of The Cancer Genome Atlas (TCGA) datasets revealed a correlation between the survival of PDAC patients, levels of klotho expression, and DNA methylation, and demonstrated a unique hypermethylation pattern of klotho in pancreatic tumors. The in vivo effects of klotho and KL1 were examined using three mouse models. Employing a novel genetic model, combining pancreatic klotho knockdown with a mutation in Kras, the lack of klotho contributed to PDAC generation and decreased mousece survival. In a xenograft model, administration of viral particles carrying sKL, a spliced klotho isoform containing the KL1 domain, inhibited pancreatic tumors. Lastly, treatment with soluble sKL prolonged survival of Pdx1-Cre; KrasG12D/+;Trp53R172H/+ (KPC) mice, a model known to recapitulate human PDAC. In conclusion, this study provides evidence that klotho is a tumor suppressor in PDAC. Furthermore, these data suggest that the levels of klotho expression and DNA methylation could have prognostic value in PDAC patients, and that administration of exogenous sKL may serve as a novel therapeutic strategy to treat PDAC
    corecore