68 research outputs found

    Interacting finite-size magnons

    Full text link
    We explicitly construct a large class of finite-volume two-magnon string solutions moving on R x S^2. In particular, by making use of the relationship between the O(3) sigma model and sine-Gordon theory we are able to find solutions corresponding to the periodic analogues of magnon scattering and breather-like solutions. After semi-classically quantizing these solutions we invert the implicit expressions for the excitation energies in certain limits and find the corrections for the multi-magnon states. For the breather-like solutions we express the energies directly in terms of the action variable whereas for the scattering solution we express the result as a combination of corrections to the dispersion relation and to the scattering phase.Comment: 45pages, 7figures, v2: simplified expressions for periods and angular momenta when elliptic modulus is greater than one, references added, typos correcte

    Plasma Hormones Facilitated the Hypermotility of the Colon in a Chronic Stress Rat Model

    Get PDF
    Objective: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS), which mimics the irritable bowel syndrome (IBS). Methods: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM) contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. Results: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP), thyrotropin-releasing hormone (TRH), motilin (MTL), and cholecystokinin (CCK) in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and corticotropin releasing hormone (CRH) in WAS rats were not significantly changed and peptide YY (PYY) in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 ml) decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 ml) increased the amplitude of IKv and IBKCa in normal rats

    Development of pan-specific antibody against trimethyllysine for protein research

    No full text
    Background: Trimethylation of the Nε-lysine residues in a protein is one of the most important events of posttranslational modifications. Simple methods for rapid detection and isolation of the Nε-trimethylated protein species are needed. This report introduces a novel method to prepare the affinity purified antibody specific for the Nε-trimethylated lysine (tMeK). The applications of the purified antibody are also reported in this paper. Methods We generated the methylated keyhole limpet heomocyanin (KLH) under controlled chemical methylation reaction using CH3I and used it as an immunogen to raise anti-methylated lysine antibodies. The tMeK specific antibody was selectively isolated using a two-step affinity chromatography in which the mMeK/dMeK specific antibodies were removed and the tMeK specific antibody was captured. Finally, the eluted anti-tMeK antibody was characterized. Results The ELISA results indicated that the antibody reacted only to tMeK but not to mono- and dimethyllysine. Western-blot results showed that the Nε-trimethylated proteins were detected in both animal tissue and cultured cells and that the antibody signal could be competitively inhibited with free tMeK. Conclusion The specific tMeK antibody we developed is useful for one-step isolation of proteins with Nε-trimethyllysine residues and also for the detection, identification and localization of proteins with trimethyllysine residues in the cells.Dermatology and Skin Science, Department ofMedicine, Faculty ofNon UBCReviewedFacult
    • …
    corecore