15 research outputs found

    Potential bioactivity of Phoenix dactylifera fruits, leaves, and seeds against prostate and pancreatic cancer cells

    Get PDF
    The use of functional foods’ phytochemicals in the chemoprevention of different cancer diseases has become one of the hot scientific areas in the clinical nutrition field. For instance, the Khalas palm cultivar (KPC; Phoenix dactylifera) is one of the natural sustainable resources that have high bioactivity and functionality. This study aimed to investigate the antiproliferative activity and mode of action of KPC’s different parts on prostate (Pc3) and pancreatic (panc1) cancer cells at a molecular level. In the methods, KPC’s leaves, seeds, and fruits’ chemical composition and phytochemical analysis were analyzed. Also, the cytotoxic effects of each extract were assessed against pc3 and panc1 cell lines. Besides, induction of apoptosis, cell cycle analysis, and gene expression of both Cap3 and Cap9 were studied. The obtained results indicated that KPC leaves extract exhibited the highest significant (P < 0.01) anti-proliferation activity against the utilized cancer cell lines compared to fruits and seeds extracts. Also, there were significant (P < 0.05) differences in the phenolic contents, flavonoid of compounds, and antioxidant power of the leaves when compared to the seeds and fruits. Additionally, the highest cytotoxic effect (lowest IC50) was recorded with leave extract than seeds and fruits. Meanwhile, the seeds extract induced (P < 0.05) the apoptosis and arrested cells in the G2/M phase as well as up-regulated the gene expression of the apoptotic-related genes (Casp3 and Casp9) compared to the control group. In conclusion, this study showed that the presence of bioactive components in the KPC different parts extracts have the significant ability to induce the apoptotic pathway that could down-regulate the proliferation of prostate (pc3) and pancreatic (panc1) cancer cells. The pathway mechanism of action was induced by the phytol molecule presented in its leaves extract

    Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers

    Get PDF
    Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants

    Paulownia trees as a sustainable solution for CO2 mitigation: assessing progress toward 2050 climate goals

    Get PDF
    Due to the progressive climate change on our planet, scientists are interested in solving this issue since it threatens not only certain regions or countries but also the world’s ecosystems and economies. Therefore, minimizing carbon dioxide (CO2) emissions and reducing atmospheric levels are global priorities. Thus, it is necessary at this moment to develop an appropriate approach to reduce or stabilize CO2 levels in the atmosphere. However, CO2 capture projects are long-term, low-profitable, and high-risk environmental projects. Consequently, it is necessary to find an appropriate and sustainable CO2 capture approach that is efficient in reducing atmospheric CO2 levels while having a safe impact on the environment. Although carbon (C) is the key basic component used to produce biological compounds by photosynthetic organisms in terrestrial plants, the C pathway is a key factor affecting the capture of CO2 by photosynthetic organisms. Among photosynthetic organisms, Paulownia, a multipurpose tree, is popular around the world for its timber and its potential role in CO2 sequestration. Paulownia spp. belongs to the Paulowniaceae family and comprises a group of trees. These trees are primarily found in southeastern Asia, particularly in China, and have been intentionally grown for more than two millennia due to their ornamental, cultural, and medicinal value. The number of Paulownia species varies depending on taxonomic classification, ranging from 6 to 17. Among them, Paulownia tomentosa, Paulownia elongata, Paulownia fortunei, and Paulownia catalpifolia are the most widely recognized and favored species. The present review provides a comprehensive technical-economic scenario for the capture of one million tons of CO2 by Paulownia trees (as a terrestrial plant model, grown on 2,400 ha−1). P. tomentosa can be utilized in agroforestry systems to mitigate greenhouse gas (GHG) emissions within urban cities and emphasize the carbon storage potential of agroforestry. In conclusion, Paulownia trees as an environmental mass project showed great encouragement to investors and governments to expand these types of projects to achieve global climate goals by 2050

    Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets

    No full text
    One of the technological advancements in agricultural production is the tissue culture propagation technique, commonly used for mass multiplication and disease-free plants. The necessity for date palm tissue culture emerged from the inability of traditional propagation methods’ offshoots to meet the immediate demands for significant amounts of planting material for commercial cultivars. Tissue culture plantlets are produced in a protected aseptic in vitro environment where all growth variables are strictly controlled. The challenges occur when these plantlets are transferred to an ex vitro climate for acclimatization. Traditional glasshouses are frequently used; however, this has substantial mortality consequences. In the present study, a novel IoT-based automated ex vitro acclimatization system (E-VAS) was designed and evaluated for the acclimatization of date palm plantlets (cv. Khalas) to enhance their morpho-physiological attributes and reduce the mortality rate and the contamination risk through minimal human contact. The experimental findings showed that the morpho-physiological parameters of 6- and 12-month-old plants were higher when acclimatized in the prototype E-VAS compared to the traditional glasshouse acclimatization system (TGAS). The maximum plant mortality percentage occurred within the first month of the transfer from the in vitro to ex vitro environment in both systems, which gradually declined up to six months; after that, no significant plant mortality was observed. About 6% mortality was recorded in E-VAS, whereas 18% in TGAS within the first month of acclimatization. After six months of study, an overall 14% mortality was recorded in E-VAS compared to 41% in TGAS. The proposed automated system has a significant potential to address the growing demand for the rapid multiplication of tissue culture-produced planting materials since the plant survival rate and phenotype quality were much higher in E-VAS than in the conventional manual system that the present industry follows for commercial production

    The Recent Development of Acoustic Sensors as Effective Chemical Detecting Tools for Biological Cells and Their Bioactivities

    No full text
    One of the most significant developed technologies is the use of acoustic waves to determine the chemical structures of biological tissues and their bioactivities. In addition, the use of new acoustic techniques for in vivo visualizing and imaging of animal and plant cellular chemical compositions could significantly help pave the way toward advanced analytical technologies. For instance, acoustic wave sensors (AWSs) based on quartz crystal microbalance (QCM) were used to identify the aromas of fermenting tea such as linalool, geraniol, and trans-2-hexenal. Therefore, this review focuses on the use of advanced acoustic technologies for tracking the composition changes in plant and animal tissues. In addition, a few key configurations of the AWS sensors and their different wave pattern applications in biomedical and microfluidic media progress are discussed

    The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment

    No full text
    This research examines the role of micro-irrigation systems, i.e., sprinkler and drip irrigation, on date palm production and quality in a semi-arid region. The field experiment was carried out for two successful seasons at a private farm, in the Al-Nubaria region of Egypt. The date palm was planted under pressurized irrigation (drip irrigation and mini-sprinkler irrigation) to investigate the effect of both irrigation systems and three water treatments (100, 80, and 60% from ETc) on the yield and quality of date palms. Results on the productivity of date palm yields showed that the yield of date palm under a drip-irrigation system with 80% of crop water demand was an equal match to the yield of the sprinkler-irrigated date palm with 100% of crop water demand. This reflects the high efficiency of the drip irrigation system compared to the sprinkler irrigation system in date palms, especially in the semi-arid region. The results showed a significant increase in productivity by increasing water applied from 60% up to 80 and 100%. Quality attributes of date palm (particularly, sucrose, purity, and extractable sugar %) have a rise with increasing water deficit. The results have numerous implications, especially for sustainable investment in date palms. Implications for three aspects of sustainable investment, economic, social, and environmental, are discussed

    The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment

    No full text
    This research examines the role of micro-irrigation systems, i.e., sprinkler and drip irrigation, on date palm production and quality in a semi-arid region. The field experiment was carried out for two successful seasons at a private farm, in the Al-Nubaria region of Egypt. The date palm was planted under pressurized irrigation (drip irrigation and mini-sprinkler irrigation) to investigate the effect of both irrigation systems and three water treatments (100, 80, and 60% from ETc) on the yield and quality of date palms. Results on the productivity of date palm yields showed that the yield of date palm under a drip-irrigation system with 80% of crop water demand was an equal match to the yield of the sprinkler-irrigated date palm with 100% of crop water demand. This reflects the high efficiency of the drip irrigation system compared to the sprinkler irrigation system in date palms, especially in the semi-arid region. The results showed a significant increase in productivity by increasing water applied from 60% up to 80 and 100%. Quality attributes of date palm (particularly, sucrose, purity, and extractable sugar %) have a rise with increasing water deficit. The results have numerous implications, especially for sustainable investment in date palms. Implications for three aspects of sustainable investment, economic, social, and environmental, are discussed

    Exploring <i>Ocimum basilicum</i>’s Secondary Metabolites: Inhibition and Molecular Docking against <i>Rhynchophorus ferrugineus</i> for Optimal Action

    No full text
    The objective of our work is to create a practical procedure to produce in vitro cell suspensions of O. basilicum and to ascertain the factors that encourage enhanced secondary metabolite production. We investigated the impact of these metabolites on Rhynchophorus ferrugineus’s adult and larval target enzymes. The explants were cultivated on Murashige and Skoog (MS) media with 0.1 to 1 mg/L plant growth regulators (PGRs) to create calluses. 2,4-Dichlorophenoxyacetic acid (2,4-D), kinetin, 1-naphthylacetic acid (NAA), and indole-3-butryic acid (IBA) at 0.5, 0.5, 0.1, and 1 mg/L, respectively, with 3% sucrose led to the highest biomass accumulation. In cell suspensions, the total phenolic content (TPC) and total flavonoid content (TFC) were 39.68 and 5.49 mg/g DW, respectively, with abiotic Verticillium dahliae as an activator. Rosmarinic acid, ursolic acid, nepetoidin A and B, salvigenin, and quercetin-3-O-rutinoside as flavonoids and phenolics were analyzed using UPLC-I TQD MS, with the highest concentrations reached after 40 days. The extract demonstrates insecticidal activity against the fourth-instar larvae of R. ferrugineus, with adults at 1197 µg/mL and 12.5 µg/larvae as LC50 and LD50 values. The extract inhibited acetylcholine esterase (AChE), acid phosphatases (ACPs), alkaline phosphatases (ALPs), and gamma-aminobutyric acid-transaminase (GABA-T) in larval tissue in vitro, with IC50 values of 124.2, 149.3, 157.8, and 204.8 µg/mL, and in vivo, with IC50 values of 157.2, 179.4, 185.3, and 241.6 µg/mL, after 24 h. Pure compounds identified the activity of the extract, showing the inhibition of AChE, ACPs, ALPs, and GABA-T with IC50 values ˂ 200 µg/mL (in vitro). The ABMET examination revealed good oral permeability, and docking tests showed that the compounds bind AChE, ACPs, ALPs, and GABA-T. These findings show that a green bioprocessing method such as an O. basilicum cell suspension is a quick and straightforward technique for producing phenolic compounds, and it may be used to develop sustainable bio-insecticides and new green procedures

    Unravelling the Effect of Triacontanol in Combating Drought Stress by Improving Growth, Productivity, and Physiological Performance in Strawberry Plants

    No full text
    To explore the effects of triacontanol (TR) on drought tolerance of strawberry plants (cv Fertona), two field experiments were carried out to study the effects of three supplementary foliar TR rates (0, 0.5, and 1 ppm) under the following three levels of water irrigation: 11 m3/hectare (40% of water holding capacity (WHC) severe as a drought treatment, 22 m3/hectare (80% of WHC) as moderate drought stress, and normal irrigation with 27 m3/hectare (100% of WHC) server as a control treatment. TR treatments were applied five times after 30 days from transplanting and with 15-day intervals. The results showed that drought stress (40% and 80%) markedly decreased the growth, fruit yield, and chlorophyll reading, as well as the gas exchange parameters (net photosynthetic rate, stomatal conductance, and transpiration rate). Meanwhile, drought stress at a high rate obviously increased antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT) contents in the leaves of the strawberry plants. The moderate and high drought stress rates enhanced some strawberry fruit quality parameters such as total soluble solids (TSS), vitamin C, and anthocyanin content compared to the control. Additionally, TR increased the activities of SOD, POX, and CAT. TR treatment significantly increased the chlorophyll contents, gas exchange parameters (photosynthetic rate and stomatal conductance), and water use efficiency (WUE). Plant height, fruit weight, and total biomass were increased also via TR application. Total yield per plant was increased 12.7% using 1 ppm of TR compared with the control. In conclusion, our results suggested that TR application could relieve the adverse effects of drought stress on the growth of strawberry plants by enhancing the antioxidant enzymes, photosynthesis rate, and WUE of the leaves
    corecore