157 research outputs found

    Depressive symptoms moderate functional connectivity within the emotional brain in chronic pain

    Full text link
    Background Depressive symptoms are often comorbid with chronic pain. These conditions share aberrant emotion processing and regulation, as well as having common brain networks. However, the relationship between depressive symptoms and chronic pain and the effects on emotional brain function are unclear. Aims The present study aimed to disentangle the effects of chronic pain and depressive symptoms on functional connectivity between regions implicated in both these conditions. Method Twenty-six individuals with chronic pain (referred to as the pain group) and 32 healthy controls underwent resting-state functional magnetic resonance imaging and completed the Beck Depression Inventory. Main effects of group, depressive symptoms (total severity score) and their interaction on the functional connectivity of three seed regions (the left and right amygdalae and the medial prefrontal cortex; mPFC) with the rest of the brain were evaluated. In cases of significant interaction, moderation analyses were conducted. Results The group × depressive symptoms interaction was significantly associated with changes in connectivity between the right amygdala and the mPFC (family-wise error-corrected P-threshold (pFWEc = 0.008). In the moderation analysis, the pain group showed weaker connectivity between these regions at lower levels of depressive symptoms (P = 0.020), and stronger connectivity at higher levels of depressive symptoms (P = 0.003), compared with the healthy controls. In addition, the strength of connectivity decreased in the healthy controls (P = 0.005) and increased in the pain group (P = 0.014) as the severity of depressive symptoms increased. Conclusions Depressive symptoms moderate the impact of chronic pain on emotional brain function, with potential implications for the choice of treatment for chronic pain

    Reduced Glutamate in the Medial Prefrontal Cortex Is Associated With Emotional and Cognitive Dysregulation in People With Chronic Pain

    Full text link
    © Copyright © 2019 Naylor, Hesam-Shariati, McAuley, Boag, Newton-John, Rae and Gustin. A decrease in glutamate in the medial prefrontal cortex (mPFC) has been extensively found in animal models of chronic pain. Given that the mPFC is implicated in emotional appraisal, cognition and extinction of fear, could a potential decrease in glutamate be associated with increased pessimistic thinking, fear and worry symptoms commonly found in people with chronic pain? To clarify this question, 19 chronic pain subjects and 19 age- and gender-matched control subjects without pain underwent magnetic resonance spectroscopy. Both groups also completed the Temperament and Character, the Beck Depression and the State Anxiety Inventories to measure levels of harm avoidance, depression, and anxiety, respectively. People with chronic pain had significantly higher scores in harm avoidance, depression and anxiety compared to control subjects without pain. High levels of harm avoidance are characterized by excessive worry, pessimism, fear, doubt and fatigue. Individuals with chronic pain showed a significant decrease in mPFC glutamate levels compared to control subjects without pain. In people with chronic pain mPFC glutamate levels were significantly negatively correlated with harm avoidance scores. This means that the lower the concentration of glutamate in the mPFC, the greater the total scores of harm avoidance. High scores are associated with fearfulness, pessimism, and fatigue-proneness. We suggest that chronic pain, particularly the stress-induced release of glucocorticoids, induces changes in glutamate transmission in the mPFC, thereby influencing cognitive, and emotional processing. Thus, in people with chronic pain, regulation of fear, worry, negative thinking and fatigue is impaired

    Corrigendum: Reduced Glutamate in the Medial Prefrontal Cortex Is Associated With Emotional and Cognitive Dysregulation in People With Chronic Pain(Front. Neurol., (2019), 10, (1110), 10.3389/fneur.2019.01110)

    Full text link
    In the original article, there was an error in the Author Contributions. It has been updated to align with the guidelines of the International Committee of Medical Journal Editors. A correction has been made to the Author Contributions

    Internet-Delivered Dialectical Behavioral Therapy Skills Training for Chronic Pain: Protocol for a Randomized Controlled Trial

    Get PDF
    Background: Emotion dysregulation is key to the development and maintenance of chronic pain, feeding into a cycle of worsening pain and disability. Dialectical behavioral therapy (DBT), an evidence-based treatment for complex transdiagnostic conditions presenting with high emotion dysregulation, may be beneficial to manage and mitigate the emotional and sensory aspects of chronic pain. Increasingly, DBT skills training as a key component of standard DBT is being delivered as a stand-alone intervention without concurrent therapy to help develop skills for effective emotion regulation. A previous repeated-measure single-case trial investigating a novel technologically driven DBT skills training, internet-delivered DBT skills training for chronic pain (iDBT-Pain), revealed promising findings to improve both emotion dysregulation and pain intensity. Objective: This randomized controlled trial aims to examine the efficacy of iDBT-Pain in comparison with treatment as usual to reduce emotion dysregulation (primary outcome) for individuals with chronic pain after 9 weeks and at the 21-week follow-up. The secondary outcomes include pain intensity, pain interference, anxiety symptoms, depressive symptoms, perceived stress, posttraumatic stress, harm avoidance, social cognition, sleep quality, life satisfaction, and well-being. The trial also examines the acceptability of the iDBT-Pain intervention for future development and testing. Methods: A total of 48 people with chronic pain will be randomly assigned to 1 of 2 conditions: treatment and treatment as usual. Participants in the treatment condition will receive iDBT-Pain, consisting of 6 live web-based group sessions led by a DBT skills trainer and supervised by a registered psychologist and the iDBT-Pain app. Participants in the treatment-as-usual condition will not receive iDBT-Pain but will still access their usual medication and health interventions. We predict that iDBT-Pain will improve the primary outcome of emotion dysregulation and the secondary outcomes of pain intensity, pain interference, anxiety symptoms, depressive symptoms, perceived stress, harm avoidance, social cognition, sleep quality, life satisfaction, and well-being. A linear mixed model with random effects of individuals will be conducted to investigate the differences between the baseline, 9-week (primary end point), and 21-week (follow-up) assessments as a function of experimental condition. Results: Recruitment started in February 2023, and the clinical trial started in March 2023. Data collection for the final assessment is planned to be completed by July 2024. Conclusions: If our hypothesis is confirmed, our findings will contribute to the evidence for the efficacy and acceptability of a viable intervention that may be used by health care professionals for people with chronic pain. The results will add to the chronic pain literature to inform about the potential benefits of DBT skills training for chronic pain and will contribute evidence about technologically driven interventions

    Emotion regulation skills-focused interventions for chronic pain: A systematic review and meta-analysis

    Full text link
    Objectives: To investigate the effect of emotion regulation skills-focused (ERSF) interventions to reduce pain intensity and improve psychological outcomes for people with chronic pain and to narratively report on safety and intervention compliance. Methods: Six databases and four registries were searched for randomized controlled trials (RCTs) up to 29 April 2022. Risk of bias was evaluated using the Cochrane RoB 2.0 tool, and certainty of evidence was assessed according to the Grading, Assessment, Development and Evaluation (GRADE). Meta-analyses for eight studies (902 participants) assessed pain intensity (primary outcome), emotion regulation, affect, symptoms of depression and anxiety, and pain interference (secondary outcomes), at two time points when available, post-intervention (closest to intervention end) and follow-up (the first measurement after the post-intervention assessment). Results: Compared to TAU, pain intensity improved post-intervention (weighted mean difference [WMD] = −10.86; 95% confidence interval [CI] [−17.55, −2.56]) and at follow-up (WMD = −11.38; 95% CI [−13.55, −9.21]). Emotion regulation improved post-intervention (standard mean difference [SMD] = 0.57; 95% CI [0.14, 1.01]), and depressive symptoms improved at follow-up (SMD = −0.45; 95% CI [−0.66, −0.24]). Compared to active comparators, anxiety symptoms improved favouring the comparator post-intervention (SMD = 0.10; 95% CI [0.03, 0.18]), and compared to CBT, pain interference improved post-intervention (SMD = −0.37; 95% CI [−0.69, −0.04]). Certainty of evidence ranged from very low to moderate. Significance: The findings provide evidence that ERSF interventions reduce pain intensity for people with chronic pain compared to usual treatment. These interventions are at least as beneficial to reduce pain intensity as the current gold standard psychological intervention, CBT. However, the limited number of studies and certainty of evidence mean further high-quality RCTs are warranted. Additionally, further research is needed to identify whether ERSF interventions may be more beneficial for specific chronic pain conditions

    Frequency of coexistent eye diseases and cognitive impairment or dementia: a systematic review and meta-analysis

    Full text link
    Objective: We aim to quantify the co-existence of age-related macular degeneration (AMD), glaucoma, or diabetic retinopathy (DR) and cognitive impairment or dementia. Method: MEDLINE, EMBASE, PsycINFO and CINAHL were searched (to June 2020). Observational studies reporting incidence or prevalence of AMD, glaucoma, or DR in people with cognitive impairment or dementia, and of cognitive impairment or dementia among people with AMD, glaucoma, or DR were included. Results: Fifty-six studies (57 reports) were included but marked by heterogeneities in the diagnostic criteria or definitions of the diseases, study design, and case mix. Few studies reported on the incidence. Evidence was sparse but consistent in individuals with mild cognitive impairment where 7.7% glaucoma prevalence was observed. Prevalence of AMD and DR among people with cognitive impairment ranged from 3.9% to 9.4% and from 11.4% to 70.1%, respectively. Prevalence of AMD and glaucoma among people with dementia ranged from 1.4 to 53% and from 0.2% to 25.9%, respectively. Prevalence of DR among people with dementia was 11%. Prevalence of cognitive impairment in people with AMD, glaucoma, and DR ranged from 8.4% to 52.4%, 12.3% to 90.2%, and 3.9% to 77.8%, respectively, and prevalence of dementia in people with AMD, glaucoma and DR ranged from 9.9% to 62.6%, 2.5% to 3.3% and was 12.5%, respectively. Conclusions: Frequency of comorbid eye disease and cognitive impairment or dementia varied considerably. While more population-based estimations of the co-existence are needed, interdisciplinary collaboration might be helpful in the management of these conditions to meet healthcare needs of an ageing population. Trial registration: PROSPERO registration: CRD42020189484

    Evaluation of the effectiveness of a novel brain-computer interface neuromodulative intervention to relieve neuropathic pain following spinal cord injury: Protocol for a single-case experimental design with multiple baselines

    Full text link
    Background: Neuropathic pain is a debilitating secondary condition for many individuals with spinal cord injury. Spinal cord injury neuropathic pain often is poorly responsive to existing pharmacological and nonpharmacological treatments. A growing body of evidence supports the potential for brain-computer interface systems to reduce spinal cord injury neuropathic pain via electroencephalographic neurofeedback. However, further studies are needed to provide more definitive evidence regarding the effectiveness of this intervention. Objective: The primary objective of this study is to evaluate the effectiveness of a multiday course of a brain-computer interface neuromodulative intervention in a gaming environment to provide pain relief for individuals with neuropathic pain following spinal cord injury. Methods: We have developed a novel brain-computer interface-based neuromodulative intervention for spinal cord injury neuropathic pain. Our brain-computer interface neuromodulative treatment includes an interactive gaming interface, and a neuromodulation protocol targeted to suppress theta (4-8 Hz) and high beta (20-30 Hz) frequency powers, and enhance alpha (9-12 Hz) power. We will use a single-case experimental design with multiple baselines to examine the effectiveness of our self-developed brain-computer interface neuromodulative intervention for the treatment of spinal cord injury neuropathic pain. We will recruit 3 participants with spinal cord injury neuropathic pain. Each participant will be randomly allocated to a different baseline phase (ie, 7, 10, or 14 days), which will then be followed by 20 sessions of a 30-minute brain-computer interface neuromodulative intervention over a 4-week period. The visual analog scale assessing average pain intensity will serve as the primary outcome measure. We will also assess pain interference as a secondary outcome domain. Generalization measures will assess quality of life, sleep quality, and anxiety and depressive symptoms, as well as resting-state electroencephalography and thalamic γ-aminobutyric acid concentration. Results: This study was approved by the Human Research Committees of the University of New South Wales in July 2019 and the University of Technology Sydney in January 2020. We plan to begin the trial in October 2020 and expect to publish the results by the end of 2021. Conclusions: This clinical trial using single-case experimental design methodology has been designed to evaluate the effectiveness of a novel brain-computer interface neuromodulative treatment for people with neuropathic pain after spinal cord injury. Single-case experimental designs are considered a viable alternative approach to randomized clinical trials to identify evidence-based practices in the field of technology-based health interventions when recruitment of large samples is not feasible

    fluorination, density, roughness, and Lennard-Jones cutoffs

    Get PDF
    The interplay of fluorination and structure of alkane self-assembled monolayers and how these affect hydrophobicity are explored via molecular dynamics simulations, contact angle goniometry, and surface-enhanced infrared absorption spectroscopy. Wetting coefficients are found to grow linearly in the monolayer density for both alkane and perfluoroalkane monolayers. The larger contact angles of monolayers of perfluorinated alkanes are shown to be primarily caused by their larger molecular volume, which leads to a larger nearest-neighbor grafting distance and smaller tilt angle. Increasing the Lennard-Jones force cutoff in simulations is found to increase hydrophilicity. Specifically, wetting coefficients scale like the inverse square of the cutoff, and when extrapolated to the infinite cutoff limit, they yield contact angles that compare favorably to experimental values. Nanoscale roughness is also found to reliably increase monolayer hydrophobicity, mostly via the reduction of the entropic part of the work of adhesion. Analysis of depletion lengths shows that droplets on nanorough surfaces partially penetrate the surface, intermediate between Wenzel and Cassie–Baxter states
    corecore