5,758 research outputs found

    Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history

    Get PDF
    As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    p-Wave holographic superconductors with Weyl corrections

    Full text link
    We study the (3+1) dimensional p-wave holographic superconductors with Weyl corrections both numerically and analytically. We describe numerically the behavior of critical temperature TcT_{c} with respect to charge density ρ\rho in a limited range of Weyl coupling parameter Îł\gamma and we find in general the condensation becomes harder with the increase of parameter Îł\gamma. In strong coupling limit of Yang-Mills theory, we show that the minimum value of TcT_{c} obtained from analytical approach is in good agreement with the numerical results, and finally show how we got remarkably a similar result in the critical exponent 1/2 of the chemical potential ÎŒ\mu and the order parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations improve

    N=1 gauge superpotentials from supergravity

    Full text link
    We review the supergravity derivation of some non-perturbatively generated effective superpotentials for N=1 gauge theories. Specifically, we derive the Veneziano-Yankielowicz superpotential for pure N=1 Super Yang-Mills theory from the warped deformed conifold solution, and the Affleck-Dine-Seiberg superpotential for N=1 SQCD from a solution describing fractional D3-branes on a C^3 / Z_2 x Z_2 orbifold.Comment: LaTeX, iopart class, 8 pages, 3 figures. Contribution to the proceedings of the workshop of the RTN Network "The quantum structure of space-time and the geometric nature of fundamental interactions", Copenhagen, September 2003; v2: published version with minor clarification

    Study of Giant Pairing Vibrations with neutron-rich nuclei

    Full text link
    We investigate the possible signature of the presence of giant pairing states at excitation energy of about 10 MeV via two-particle transfer reactions induced by neutron-rich weakly-bound projectiles. Performing particle-particle RPA calculations on 208^{208}Pb and BCS+RPA calculations on 116^{116}Sn, we obtain the pairing strength distribution for two particles addition and removal modes. Estimates of two-particle transfer cross sections can be obtained in the framework of the 'macroscopic model'. The weak-binding nature of the projectile kinematically favours transitions to high-lying states. In the case of (~^6He, \~^4He) reaction we predict a population of the Giant Pairing Vibration with cross sections of the order of a millibarn, dominating over the mismatched transition to the ground state.Comment: Talk presented in occasion of the VII School-Semina r on Heavy Ion Physics hosted by the Flerov Laboratory (FLNR/JINR) Dubna, Russia from May 27 to June 2, 200

    Non-Gorenstein isolated singularities of graded countable Cohen-Macaulay type

    Full text link
    In this paper we show a partial answer the a question of C. Huneke and G. Leuschke (2003): Let R be a standard graded Cohen-Macaulay ring of graded countable Cohen-Macaulay representation type, and assume that R has an isolated singularity. Is R then necessarily of graded finite Cohen-Macaulay representation type? In particular, this question has an affirmative answer for standard graded non-Gorenstein rings as well as for standard graded Gorenstein rings of minimal multiplicity. Along the way, we obtain a partial classification of graded Cohen-Macaulay rings of graded countable Cohen-Macaulay type.Comment: 15 Page

    Quark-Gluon Plasma/Black Hole duality from Gauge/Gravity Correspondence

    Full text link
    The Quark-Gluon Plasma (QGP) is the QCD phase of matter expected to be formed at small proper-times in the collision of heavy-ions at high energy. Experimental observations seem to favor a strongly coupled QCD plasma with the hydrodynamic properties of a quasi-perfect fluid, i.e. rapid thermalization (or isotropization) and small viscosity. The theoretical investigation of such properties is not obvious, due to the the strong coupling. The Gauge/Gravity correspondence provides a stimulating framework to explore the strong coupling regime of gauge theories using the dual string description. After a brief introduction to Gauge/Gravity duality, and among various existing studies, we focus on challenging problems of QGP hydrodynamics, such as viscosity and thermalization, in terms of gravitational duals of both the static and relativistically evolving plasma. We show how a Black Hole geometry arises naturally from the dual properties of a nearly perfect fluid and explore the lessons and prospects one may draw for actual heavy ion collisions from the Gauge/Gravity duality approach.Comment: 6 pages, 4 figures, invited talk at the EPS HEP 2007 Conference, Manchester (UK), and at the ``Deuxiemes rencontres PQG-France'', Etretat (2007); reference adde

    Effects of Force Enhancement and Force Depression on Postactivation Potentiation in the Human Adductor Pollicis

    Get PDF
    Force enhancement and force depression following active stretch and shortening are commonly observed muscle properties. However the mechanisms underlying these properties are not fully understood. Increased or decreased muscle potentiation (that is, the amount of phosphorylation of the myosin light chains) might contribute to force enhancement and force depression but has never been examined. In this study, we examined the effect of active stretch and shortening on potentiation of the in vivo human adductor pollicis muscle to determine whether the phosphorylation that causes muscle potentiation is a viable contributor to force enhancement and depression. Potentiation was assessed with twitch contractions and the contribution of potentiation to force enhancement/depression was assessed by comparing the force of isometric contractions prior to and following muscle potentiation. Subjects were given twitches before and after maximum voluntary isometric contractions at a thumb adduction angle of 30° and 0°, and these twitches were compared to twitches given before and after an active stretch from 0° to 30° (n=15) and an active shortening (n=12) from 30° to 0°. Stretch and shortening contractions were then followed 10s later by an isometric contraction at the finishing position to observe any effects of changed potentiation on maximal voluntary isometric contractions. Potentiation was increased significantly (17%) after active muscle stretching but remained unchanged following active muscle shortening. The increased potentiation following active muscle stretching did not affect isometric forces. We conclude from these results that active muscle stretching increases the amount of muscle potentiation, but does not contribute to the force enhancement observed following active muscle stretch. We speculate that the stretch-induced increase in muscle potentiation is a mechanism for saving energy during sub- maximal and maximal muscular contractions
    • 

    corecore