95 research outputs found

    TOLERANCE AND IMMUNITY TO MATERNALLY DERIVED INCOMPATIBLE IgG2a-GLOBULIN IN MICE

    Get PDF
    Progeny mice were confronted with maternal Ξ³-globulin of a different allotype by either back-cross mating, intercross mating, or by foster nursing. In all cases, many mice subsequently produced alloantibodies directed against the incompatible maternal type of IgG2a-globulin. In one series of experiments, immunologic tolerance to the maternally derived Ξ³-globulin was demonstrated to exist in the period before formation of spontaneous antibody. The state of tolerance was then lost, unless maintenance injections of foreign Ξ³-globulin were given. These studies demonstrate in a natural situation that maternally derived foreign proteins can first induce a state of immunological tolerance which is followed, after disappearance of the antigen, by a state of immunity. As such, this parallels the experimental induction of tolerance to foreign proteins by neonatal injections

    ACTIVE SUPPRESSION OF IMMUNOGLOBULIN ALLOTYPE SYNTHESIS : II. TRANSFER OF SUPPRESSING FACTOR WITH SPLEEN CELLS

    Get PDF
    The mechanism of chronic allotype suppression in (SJL x BALB/c)F1 mice has been investigated by means of cell transfer studies. These mice are phenotypically negative for serum Ig-1b, the paternal allotype determinant on Ξ³G2a immunoglubulin, as a result of perinatal exposure to maternal anti-Ig-1b. When spleen or bone marrow (B) cells from suppressed mice were injected into irradiated BALB/c "indicator" hosts, detectable levels of Ig-1b were demonstrated in the sera of a majority of the recipients early after transfer. These results indicate that Ig-1b-producing cells or their precursors are present in the lymphoid tissues of suppressed mice, even though they are not expressed. Within 5–7 wk, it was no longer possible to detect Ig-1b in the sera of these hosts, although cells producing another paternal allotype (Ig-4b) were shown to persist. Control BALB/c mice, injected with spleen and B cells from normal mice, continued to produce high levels of immunoglobulin carrying this allotype. The disappearance of serum, Ig-1b occurred most frequently in the recipients of suppressed spleen cells. Similar results were obtained using a mixture of spleen cells from normal and suppressed mice. Ig-1b production in the recipient mice ceased within a few weeks, even though the majority of cells in the mixture were obtained from normal (nonsuppressed) donors. The data are interpreted as evidence that chronic allotype suppression in mice is actively maintained by cells which are resident in the lymphoid tissues, splenic cells being the most effective. These cells are capable of proliferating in a new host and exerting their suppressive influence on Ig-1b-producing cells and/or their precursors

    The regulation of CD5 expression in murine T cells

    Get PDF
    BACKGROUND: CD5 is a pan-T cell surface marker that is also present on a subset of B cells, B-1a cells.Functional and developmental subsets of T cells express characteristic CD5 levels that vary over roughly a 30-fold range. Previous investigators have cloned a 1.7 Kb fragment containing the CD5 promoter and showed that it can confer similar lymphocyte-specific expression pattern as observed for endogenous CD5 expression. RESULTS: We further characterize the CD5 promoter and identify minimal and regulatory regions on the CD5 promoter. Using a luciferase reporter system, we show that a 43 bp region on the CD5 promoter regulates CD5 expression in resting mouse thymoma EL4 T cells and that an Ets binding site within the 43 bp region mediates the CD5 expression. In addition, we show that Ets-1, a member of the Ets family of transcription factors, recognizes the Ets binding site in the electrophoretic mobility shift assay (EMSA). This Ets binding site is directly responsible for the increase in reporter activity when co-transfected with increasing amounts of Ets-1 expression plasmid. We also identify two additional evolutionarily-conserved regions in the CD5 promoter (CD5X and CD5Y) and demonstrate the respective roles of the each region in the regulation of CD5 transcription. CONCLUSION: Our studies define a minimal and regulatory promoter for CD5 and show that the CD5 expression level in T cells is at least partially dependent on the level of Ets-1 protein. Based on the findings in this report, we propose a model of CD5 transcriptional regulation in T cells

    B Lineage–specific Regulation of V(D)J Recombinase Activity Is Established in Common Lymphoid Progenitors

    Get PDF
    Expression of V(D)J recombinase activity in developing lymphocytes is absolutely required for initiation of V(D)J recombination at antigen receptor loci. However, little is known about when during hematopoietic development the V(D)J recombinase is first active, nor is it known what elements activate the recombinase in multipotent hematopoietic progenitors. Using mice that express a fluorescent transgenic V(D)J recombination reporter, we show that the V(D)J recombinase is active as early as common lymphoid progenitors (CLPs) but not in the upstream progenitors that retain myeloid lineage potential. Evidence of this recombinase activity is detectable in all four progeny lineages (B, T, and NK, and DC), and rag2 levels are the highest in progenitor subsets immediately downstream of the CLP. By single cell PCR, we demonstrate that V(D)J rearrangements are detectable at IgH loci in ∼5% of splenic natural killer cells. Finally, we show that recombinase activity in CLPs is largely controlled by the Erag enhancer. As activity of the Erag enhancer is restricted to the B cell lineage, this provides the first molecular evidence for establishment of a lineage-specific transcription program in multipotent progenitors
    • …
    corecore