4 research outputs found

    Prenatal AAV9-GFP administration in fetal lambs results in transduction of female germ cells and maternal exposure to virus.

    No full text
    Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells

    Prenatal Somatic Cell Gene Therapies: Charting a Path Toward Clinical Applications (Proceedings of the CERSI-FDA Meeting)

    No full text
    We are living in a golden age of medicine in which the availability of prenatal diagnosis, fetal therapy, and gene therapy/editing make it theoretically possible to repair almost any defect in the genetic code. Furthermore, the ability to diagnose genetic disorders before birth and the presence of established surgical techniques enable these therapies to be delivered safely to the fetus. Prenatal therapies are generally used in the second or early third trimester for severe, life-threatening disorders for which there is a clear rationale for intervening before birth. While there has been promising work for prenatal gene therapy in preclinical models, the path to a clinical prenatal gene therapy approach is complex. We recently held a conference with the University of California, San Francisco-Stanford Center of Excellence in Regulatory Science and Innovation, researchers, patient advocates, regulatory (members of the Food and Drug Administration), and other stakeholders to review the scientific background and rationale for prenatal somatic cell gene therapy for severe monogenic diseases and initiate a dialogue toward a safe regulatory path for phase 1 clinical trials. This review represents a summary of the considerations and discussions from these conversations
    corecore