11 research outputs found

    Impact of the January 2012 solar proton event on polar mesospheric clouds

    Get PDF
    We use data from the Aeronomy of Ice in the Mesosphere mission and simulations using the Whole Atmosphere Community Climate Model to determine the impact of the 23–30 January 2012 solar proton event (SPE) on polar mesospheric clouds (PMCs) and mesospheric water vapor. We see a small heating and loss of ice mass on 26 January that is consistent with prior results but is not statistically significant. We also find a previously unreported but statistically significant ~10% increase in ice mass and in water vapor in the sublimation area in the model that occurs in the 7 to 14 days following the start of the event. The magnitude of the response to the January 2012 SPE is small compared to other sources of variability like gravity waves and planetary waves; however, sensitivity tests suggest that with larger SPEs this delayed increase in ice mass will increase, while there is little change in the loss of ice mass early in the event. The PMC response to SPEs in models is dependent on the gravity wave parameterization, and temperature anomalies from SPEs may be useful in evaluating and tuning gravity wave parameterizations

    On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low latitude thermospheric nitric oxide

    Get PDF
    We use data from two NASA satellites, the Thermosphere Ionosphere Energetics and Dynamics (TIMED) and the Aeronomy of Ice in the Mesosphere (AIM) satellites in conjunction with model simulations from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) to elucidate the key dynamical and chemical factors governing the abundance and diurnal variation of nitric oxide (NO) at near solar minimum conditions and low latitudes. This analysis was enabled by the recent orbital precession of the AIM satellite which caused the solar occultation pattern measured by the Solar Occultation for Ice Experiment (SOFIE) to migrate down to low and mid latitudes for specific periods of time. We use a month of NO data collected in January 2017 to compare with two versions of the TIME-GCM, one driven solely by climatological tides and analysis-derived planetary waves at the lower boundary and free running at all other altitudes, while the other is constrained by a high-altitude analysis from the Navy Global Environmental Model (NAVGEM)up to the mesopause. We also compare SOFIE data with a NO climatology from the Nitric Oxide Empirical Model (NOEM). Both SOFIE and NOEM yield peak NO abundances of around 4×107cm−3; however, the SOFIE profile peaks about 6-8 km lower than NOEM. We show that this difference is likely a local time effect; SOFIE being a dawn measurement and NOEM representing late morning/near noon. The constrained version of TIME-GCM exhibits a low altitude dawn peak while the model that is forced solely at the lower boundary and free running above does not. We attribute this difference due to a phase change in the semi-diurnal tide in the NAVGEM-constrained model causing descent of high NO mixing ratio air near dawn. This phase difference between the two models arises due to differences in the mesospheric zonal mean zonal winds. Regarding the absolute NO abundance, all versions of the TIME-GCM overestimate this. Tuning the model to yield calculated atomic oxygen in agreement with TIMED data helps, but is insufficient. Further, the TIME-GCM underestimates the electron density [e-] as compared with the International Reference Ionosphere empirical model. This suggests a potential conflict with the requirements of NO modeling and [e-] modeling since one solution typically used to increase model [e-] is to increase the solar soft X ray flux which would, in this case, worsen the NO model/data discrepancy

    Global Dynamics of the MLT

    Full text link

    New Global Meteoric Smoke Observations From SOFIE: Insight Regarding Chemical Composition, Meteoric Influx, and Hemispheric Asymmetry

    No full text
    Measurements from the Solar Occultation For Ice Experiment (SOFIE) in both hemispheres are used to characterize meteoric smoke in the mesosphere and to estimate the meteoric flux into Earth's atmosphere. New smoke extinction retrievals from sunrise measurements in the Northern Hemisphere (NH) are presented, which complement the previously reported sunset observations in the Southern Hemisphere (SH). The sunrise observations are in good agreement with simulations from the Whole Atmosphere Community Climate Model (WACCM), for both the seasonal and height dependence of smoke in the mesosphere. The SOFIE-WACCM comparisons assumed that smoke in the mesosphere exists purely as Fe-rich olivine. This is justified because olivine is detected optically by SOFIE, meteoric ablation is predicted to inject similar quantities of the most abundant elements (Fe, Mg, and Si) into the mesosphere, and olivine is anticipated by theory and laboratory experiments. In addition, the ablated meteoric influx (AMI) and total meteoric influx determined from SOFIE assuming Fe-rich olivine is in agreement with a recent and independent investigation based on models and observations. SOFIE observations from 2007 to 2021 indicate a global AMI of 7.3 ± 2.2 metric tons per day (t d−1), which corresponds to a total influx (ablated plus surviving material) of 24.7 ± 7.3 t d−1. Finally, the results indicate stronger descent in the NH polar winter mesosphere than in the SH winter. This hemispheric asymmetry at polar latitudes is indicated by smoke and water vapor results from both SOFIE and WACCM
    corecore