13 research outputs found

    Transient and intensive pharmacological immunosuppression fails to improve AAV-based liver gene transfer in non-human primates

    Get PDF
    BACKGROUND: Adeno-associated vectors (rAAV) have been used to attain long-term liver gene expression. In humans, the cellular immune response poses a serious obstacle for transgene persistence while neutralizing humoral immunity curtails re-administration. Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria) benefits from liver gene transfer in mouse models and clinical trials are about to begin. In this study, we sought to study in non-human primates the feasibility of repeated gene-transfer with intravenous administration of rAAV5 vectors under the effects of an intensive immunosuppressive regimen and to analyze its ability to circumvent T-cell immunity and thereby prolong transgene expression. METHODS: Three female Macaca fascicularis were intravenously injected with 1x1013 genome copies/kg of rAAV5 encoding the human PBGD. Mycophenolate mofetil (MMF), anti-thymocyte immunoglobulin, methylprednisolone, tacrolimus and rituximab were given in combination during 12 weeks to block T- and B-cell mediated adaptive immune responses in two macaques. Immunodeficient and immunocompetent mice were intravenously injected with 5x1012 genome copies/kg of rAAV5-encoding luciferase protein. Forty days later MMF, tacrolimus and rituximab were daily administrated to ascertain whether the immunosuppressants or their metabolites could interfere with transgene expression. RESULTS: Macaques given a rAAV5 vector encoding human PBGD developed cellular and humoral immunity against viral capsids but not towards the transgene. Anti-AAV humoral responses were attenuated during 12 weeks but intensely rebounded following cessation of the immunosuppressants. Accordingly, subsequent gene transfer with a rAAV5 vector encoding green fluorescent protein was impossible. One macaque showed enhanced PBGD expression 25 weeks after rAAV5-pbgd administration but overexpression had not been detected while the animal was under immunosuppression. As a potential explanation, MMF decreases transgene expression in mouse livers that had been successfully transduced by a rAAV5 several weeks before MMF onset. Such a silencing effect was independent of AAV complementary strand synthesis and requires an adaptive immune system. CONCLUSIONS: These results indicate that our transient and intensive pharmacological immunosuppression fails to improve AAV5-based liver gene transfer in non-human primates. The reasons include an incomplete restraint of humoral immune responses to viral capsids that interfere with repeated gene transfer in addition to an intriguing MMF-dependent drug-mediated interference with liver transgene expression

    Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates

    Get PDF
    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Inflammation and immunity in ovarian cancer

    No full text
    The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome

    Inflammation and immunity in ovarian cancer

    No full text
    The standard first-line therapy for ovarian cancer is a combination of surgery and carboplatin/paclitaxel-based chemotherapy. Patients with longer survival and improved response to chemotherapy usually present T-cell inflamed tumours. The presence of tumour-infiltrating T cells (TILs) notably varies among the different subtypes of ovarian tumours, being highest in high-grade serous ovarian carcinoma, intermediate in endometrioid tumours, and lowest in low-grade serous, mucinous and clear cell tumours. Interestingly, the presence of TILs is often accompanied by a strong immunosuppressive tumour environment. A better understanding of the immune response against ovarian cancer and the tumour immune evasion mechanisms will enable improved prognostication, response prediction and immunotherapy of this disease. This article provides an overview of some ovarian cancer cell features relevant for antitumour response, such as tumour-associated antigens, including neoantigens, expression of inhibitory molecules, and other mechanisms of immune evasion. Moreover, we describe relevant immune cell types found in epithelial ovarian tumours, including T and B lymphocytes, regulatory T cells, natural killer cells, tumour-associated macrophages, myeloid-derived suppressor cells and neutrophils. We focus on how these components influence the burden of the tumour and the clinical outcome

    Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates

    No full text
    Repeated administration of gene therapies is hampered by host immunity toward vectors and transgenes. Attempts to circumvent antivector immunity include pharmacological immunosuppression or alternating different vectors and vector serotypes with the same transgene. Our studies show that B-cell depletion with anti-CD20 monoclonal antibody and concomitant T-cell inhibition with clinically available drugs permits repeated liver gene transfer to a limited number of nonhuman primates with recombinant adenovirus. Adenoviral vector–mediated transfer of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene was visualized in vivo with a semiquantitative transgene-specific positron emission tomography (PET) technique, liver immunohistochemistry, and immunoblot for the reporter transgene in needle biopsies. Neutralizing antibody and T cell–mediated responses toward the viral capsids were sequentially monitored and found to be repressed by the drug combinations tested. Repeated liver transfer of the HSV1-tk reporter gene with the same recombinant adenoviral vector was achieved in macaques undergoing a clinically feasible immunosuppressive treatment that ablated humoral and cellular immune responses. This strategy allows measurable gene retransfer to the liver as late as 15 months following the first adenoviral exposure in a macaque, which has undergone a total of four treatments with the same adenoviral vector

    Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients

    No full text
    Twenty-four patients with metastatic cancer received two cycles of four daily immunizations with monocyte-derived dendritic cells (DC). DC were incubated with preheated autologous tumor lysate and subsequently with IFN-α, TNF-α, and polyinosinic:polycytidylic acid to attain type 1 maturation. One DC dose was delivered intranodally, under ultrasound control, and the rest intradermally in the opposite thigh. Cyclophosphamide (day -7), GM-CSF (days 1-4), and pegIFN alpha-2a (days 1 and 8) completed each treatment cycle. Pretreatment with cyclophosphamide decreased regulatory T cells to levels observed in healthy subjects both in terms of percentage and in absolute counts in peripheral blood. Treatment induced sustained elevations of IL-12 in serum that correlated with the output of IL-12p70 from cultured DC from each individual. NK activity in peripheral blood was increased and also correlated with the serum concentration of IL-12p70 in each patient. Circulating endothelial cells decreased in 17 of 18 patients, and circulating tumor cells markedly dropped in 6 of 19 cases. IFN-γ-ELISPOT responses to DC plus tumor lysate were observed in 4 of 11 evaluated cases. Tracing DC migration with [(111)In] scintigraphy showed that intranodal injections reached deeper lymphatic chains in 61% of patients, whereas with intradermal injections a small fraction of injected DC was almost constantly shown to reach draining inguinal lymph nodes. Five patients experienced disease stabilization, but no objective responses were documented. This combinatorial immunotherapy strategy is safe and feasible, and its immunobiological effects suggest potential activity in patients with minimal residual disease. A randomized trial exploring this hypothesis is currently ongoing
    corecore