13 research outputs found

    Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry

    Get PDF
    The aim of this study was to investigate the relationship between continuous lead exposure and the concentration of this metal in fur. The two main questions we wanted to answer were: 1) Are the fur lead concentrations different according to exposure level? 2) Is the kinetics of lead concentration linear in different compartments

    RECHERCHE D'UN EFFET PROTECTEUR DE LA BETA-STIMULATION SUR LE COEUR ISOLE DE RAT TRAVAILLANT EN ISOVOLUMETRIE (IMPLICATION DES RECEPTEURS BETA-1 ET BETA-2-ADRENERGIQUES (DOCTORAT : PHARMACOLOGIE))

    No full text
    REIMS-BU Santé (514542104) / SudocPARIS-BIUM (751062103) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Involvement of P2Y receptors in pyridoxal-5'-phosphate-induced cardiac preconditioning

    No full text
    International audienceUsing an isolated non‐working rat heart model, this study investigated the mechanisms of pharmacological pre‐conditioning (PC) induced by P2Y receptor stimulation with pyridoxal‐5â€Č‐phosphate (PLP). After 6‐hydroxydopamine pretreatment and a 15‐min stabilization period, isolated rat hearts were perfused for 25 min then subjected to 40 min of global ischemia and 30 min of reperfusion (I/R); exposed for 15 min to 0.05 Όm PLP bracketed for 25 min with broad‐spectrum P2 antagonists (suramin or PPADS) or with more specific P2Y antagonists (AMPαS or MRS2578), 1 Όm each, followed by a 5‐min PLP‐free perfusion before I/R; treated during 25 min with either glybenclamide (GLY, 1 Όm), 5‐hydroxydecanoic acid (5‐HD, 100 Όm), U73122 (0.5 Όm), H89 (1 Όm), or KN93 (1 Όm), with an infusion starting 5 min before PLP. The main endpoints were the rate–pressure product (RPP), creatine kinase (CK) release and area necrosis. Recovery of RPP, measured 5 min after reperfusion, was rapidly improved by PLP, blocked by the P2 antagonists, and decreased with the different inhibitors. Fifteen minutes after the end of ischemia, CK release reached maximal values in all groups. PLP provided significant protection, whereas the P2 antagonists, 5‐HD, a mitochondrial selective KATP antagonist and GLY a non‐selective KATP channel blocker, suppressed the protective effect on myocardial injury. The suppression of the cardioprotective effects of PLP by AMPαS, the PKA inhibitor (H89), and phospholipase C blocker (U73122) is in agreement with the P2Y11 receptor as a receptor for PLP‐induced PC. The suppression of the cardioprotective effects of PLP by MRS2578 and U73122 is in agreement with the P2Y6 receptor as a receptor for PLP‐induced PC. Pre‐ischemic exposure to nanomolar concentrations of PLP is protective against I/R. P2Y11 and P2Y6 represents the most likely candidate receptors for PLP‐induced cardiac PC

    Une intoxication volontaire grave Ă  la venlafaxine

    No full text
    Une jeune femme de 24 ans est admise aux urgences dans un Ă©tat de coma rĂ©actif, secondaire Ă  l'ingestion volontaire, probable, de 60 comprimĂ©s de venlafaxine dosĂ©s Ă  50 mg. Durant son transport et Ă  son arrivĂ©e Ă  l'hĂŽpital, elle prĂ©sente plusieurs crises convulsives gĂ©nĂ©ralisĂ©es. L'examen clinique montre une tachycardie, avec Ă  l'ECG un rythme sinusal Ă  QRS fins. L'interrogatoire rĂ©vĂšle l'absorption en une prise unique, environ 2 heures prĂ©cĂ©dant l'admission aux urgences, des 3 grammes de venlafaxine, sans aucune autre substance associĂ©e. AprĂšs une prise en charge thĂ©rapeutique conventionnelle avec administration de clonazĂ©pam, la patiente quitte le service de rĂ©animation 48 heures aprĂšs son arrivĂ©e. Aucune sĂ©quelle n 'est Ă  dĂ©plorer. Les analyses toxicologiques effectuĂ©es sur les tout premiers prĂ©lĂšvements sanguins ont permis de confirmer, au moyen de la chromatographie en phase gazeuse couplĂ©e Ă  la spectromĂ©trie de masse, la nature du composĂ© incriminĂ©. Plusieurs prĂ©lĂšvements consĂ©cutifs ont Ă©tĂ© rĂ©alisĂ©s pendant les 24 premiĂšres heures de surveillance en service de rĂ©animation. Les concentrations plasmatiques de venlafaxine et de son principal mĂ©tabolite actif, l'O-dĂ©mĂ©thylvenlafaxine, ont Ă©tĂ© dĂ©terminĂ©es par chromatographie liquide haute performance et dĂ©tection ultraviolette. Ce cas d'intoxication avec 3 grammes de venlafaxine absorbĂ©e isolĂ©ment, documentĂ© par des dosages sanguins rĂ©pĂ©tĂ©s, n'a, Ă  notre connaissance, pas encore Ă©tĂ© dĂ©crit en France. Sur le plan de la symptomatologie clinique et du suivi toxicocinĂ©tique, cette observation est en accord avec plusieurs donnĂ©es de la littĂ©rature. Enfin, il apparaĂźt que la persistance d'une tachycardie sinusale au moins pendant 12 heures suivant l'intoxication, soit en relation avec le maintien, sur cette mĂȘme pĂ©riode, de concentrations de venlafaxine et de son mĂ©tabolite actif, supĂ©rieures aux concentrations thĂ©rapeutiques

    Complementary Role of P2 and Adenosine Receptors in ATP Induced-Anti-Apoptotic Effects Against Hypoxic Injury of HUVECs

    Get PDF
    Background: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. Methods: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. Results: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2â€Č,4â€Č-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. Conclusions: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney

    Ticagrelor Prevents Endothelial Cell Apoptosis through the Adenosine Signalling Pathway in the Early Stages of Hypoxia

    No full text
    International audienceBackground: Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia-reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. Method: By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. Results: Our results showed that 10 ”M ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. Conclusion: we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium

    Distribution tissulaire

    No full text
    Objectif : DĂ©crire la distribution du mĂ©probamate dans diffĂ©rents tissus et fluides biologiques collectĂ©s lors de l'autopsie concernant huit cas de dĂ©cĂšs pour lesquels le mĂ©probamate a Ă©tĂ© identifiĂ© dans le sang pĂ©riphĂ©rique. MĂ©thodes : Les prĂ©lĂšvements autopsiques disponibles Ă©taient le plus souvent le sang pĂ©riphĂ©rique, le sang cardiaque, l'humeur vitrĂ©e, la bile, le foie, le rein, le poumon, le coeur et le cerveau. Les Ă©chantillons (fluides et homogĂ©nats tissulaires) Ă©taient analysĂ©s par LC-MSn Ă  trappe d'ions, aprĂšs extraction liquide-liquide en prĂ©sence de carisoprodol (Ă©talon interne). RĂ©sultats : Les concentrations de mĂ©probamate dans le sang pĂ©riphĂ©rique variaient de 9 Ă  160 mg/L. Les coefficients de distribution post-mortem du mĂ©probamate, exprimĂ©s par le rapport [concentration dans le tissu (mg/kg) ou fluide d'intĂ©rĂȘt (mg/L)]/[concentration dans le sang pĂ©riphĂ©rique (mg/L)], Ă©taient de 0,97 pour le sang cardiaque (n=8), 0,83 pour l'humeur vitrĂ©e (n=6), 1,16 pour la bile (n=8), 2,63 pour le foie (n=6), 1,82 pour le rein (n=8), 1,81 pour le coeur (n=8), 1,83 pour le cerveau (n=8) et 1,74 pour le poumon (n=8). Les coefficients de variation associĂ©s Ă  ces moyennes Ă©taient tous infĂ©rieurs Ă  25 %, exceptĂ© pour le foie (31 %). Conclusion : Avec des coefficients de distribution moyens proches de 1, le mĂ©probamate ne semble pas s'accumuler dans l'humeur vitrĂ©e et la bile. Dans les autres tissus, ces coefficients varient de 1,7 Ă  2,6, objectivant ainsi une distribution tissulaire modĂ©rĂ©e, en accord avec le volume apparent de distribution peu Ă©levĂ© du mĂ©probamate (0,7 L/kg). En dĂ©pit du nombre limitĂ© de cas Ă©tudiĂ©s, la variabilitĂ© inter-individuelle relativement peu importante de la distribution tissulaire de mĂ©probamate pourrait thĂ©oriquement suggĂ©rer l'utilisation des concentrations tissulaires post-mortem en vue d'une estimation des concentrations dans le sang pĂ©riphĂ©rique, lorsque cette matrice n'est pas disponible Ă  l'autopsie. Pour ĂȘtre confirmĂ©s, ces rĂ©sultats nĂ©cessitent d'ĂȘtre complĂ©tĂ©s dans une plus large Ă©tude
    corecore