53 research outputs found

    A model for collisions in granular gases

    Full text link
    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure

    A microscopic 2D lattice model of dimer granular compaction with friction

    Full text link
    We study by Monte Carlo simulation the compaction dynamics of hard dimers in 2D under the action of gravity, subjected to vertical and horizontal shaking, considering also the case in which a friction force acts for horizontal displacements of the dimers. These forces are modeled by introducing effective probabilities for all kinds of moves of the particles. We analyze the dynamics for different values of the time τ\tau during which the shaking is applied to the system and for different intensities of the forces. It turns out that the density evolution in time follows a stretched exponential behavior if τ\tau is not very large, while a power law tail develops for larger values of τ\tau. Moreover, in the absence of friction, a critical value τ\tau^* exists which signals the crossover between two different regimes: for τ<τ\tau < \tau^* the asymptotic density scales with a power law of τ\tau, while for τ>τ\tau > \tau^* it reaches logarithmically a maximal saturation value. Such behavior smears out when a finite friction force is present. In this situation the dynamics is slower and lower asymptotic densities are attained. In particular, for significant friction forces, the final density decreases linearly with the friction coefficient. We also compare the frictionless single tap dynamics to the sequential tapping dynamics, observing in the latter case an inverse logarithmic behavior of the density evolution, as found in the experiments.Comment: 10 pages, 15 figures, to be published in Phys. Rev.

    Herstellung haploider Pflanzen aus Festuca-Lolium-Bastarden

    No full text

    Die ostpreu�ische Zweigstelle des Kaiser Wilhelm-Instituts f�r Z�chtungsforschung

    No full text

    Interspecific and intergeneric hybrids in herbage grasses

    No full text

    Buchbesprechungen

    No full text
    corecore