37 research outputs found

    Discrete Ω\Omega-nets and Guichard nets

    Full text link
    We provide a convincing discretisation of Demoulin's Ω\Omega-surfaces along with their specialisations to Guichard and isothermic surfaces with no loss of integrable structure.Comment: 39 A4 page

    Discrete special isothermic surfaces

    Get PDF

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve γ\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along γ\gamma, find an isothermic surface that is tangent to γ\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along γ\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Generalized isothermic lattices

    Full text link
    We study multidimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isthermic lattices using Steiner's projective structure of conics and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem.Comment: 19 pages, 11 figures; v2. some typos corrected; v3. new references added, higlighted similarities and differences with recent papers on the subjec

    The PT-symmetric brachistochrone problem, Lorentz boosts and non-unitary operator equivalence classes

    Full text link
    The PT-symmetric (PTS) quantum brachistochrone problem is reanalyzed as quantum system consisting of a non-Hermitian PTS component and a purely Hermitian component simultaneously. Interpreting this specific setup as subsystem of a larger Hermitian system, we find non-unitary operator equivalence classes (conjugacy classes) as natural ingredient which contain at least one Dirac-Hermitian representative. With the help of a geometric analysis the compatibility of the vanishing passage time solution of a PTS brachistochrone with the Anandan-Aharonov lower bound for passage times of Hermitian brachistochrones is demonstrated.Comment: 12 pages, 2 figures, strongly extended versio
    corecore