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Discrete special isothermic surfaces
(F Burstall, U Hertrich-Jeromin, W Rossman & S Santos)

Abstract. We discuss special isothermic nets of type N , a new class of discrete isothermic nets,
generalizing isothermic nets with constant mean curvature in spaceforms. In the case N = 2 these
are the discrete analogues of Bianchi’s special isothermic surfaces that can be regarded as the origin
of the rich transformation theory of isothermic surfaces. Accordingly, special isothermic nets come
with Bäcklund transformations and a Lawson correspondence. The notion of complementary nets
naturally occurs and sheds further light on the relation between geometry and integrability.
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1. Introduction

We discuss a novel concept in discrete differential geometry: the concept of “polynomial con-
served quantities”. Associated with this concept is a new class of “special isothermic nets”, which
generalize discrete nets of constant mean curvature. These discrete nets come, as their smooth
counterparts [7], with a “Lawson correspondence” as well as a Bäcklund transformation.

We work in the context of “integrable” or structure preserving discretizations. In particular, we
consider discrete isothermic nets (see [3] or [11, Sect 5.7]), that is, discrete quadrilateral nets
that discretize curvature line parametrizations of surfaces admitting conformal curvature line
parameters. Here, we take a gauge theoretic viewpoint: as their smooth counterparts, discrete
isothermic nets can be characterized by the existence of an “isothermic loop of flat connections”,
defined on a suitable (discrete) vector bundle over the surface. This gauge theoretic approach
can be considered as the key to the rich transformation theory of (smooth as well as discrete)
isothermic surfaces, cf [11, Chap 5], and provides a conceptual reason for the preservation of
structure in this approach to discretization, cf [4].

“Polynomial conserved quantities” of a loop of (flat) connections are simply polynomial loops of
parallel sections, that is, polynomials of the spectral parameter with coefficients in the underlying
vector bundle that are parallel for each value of the spectral parameter, reminiscent of the finite
gap integration scheme from integrable systems theory.

While (discrete) constant mean curvature surfaces in spaceforms admit a more direct approach
via the (isothermic) transformation theory (as “special” isothermic nets), they also constitute the
simplest non-trivial class of examples of (smooth or discrete) surfaces with polynomial conserved
quantities, see [6] or [8]. More specifically: a discrete constant mean curvature surface can be
characterized by the existence of a dual net in a concentric quadric and, in particular, the existence
of a mean curvature sphere congruence that takes values in a linear sphere complex, see [5] and
[8]. This mean curvature sphere congruence, being itself an isothermic surface, comes with its own
associated isothermic loop of flat connections. Using a gauge transformation turns the constant
parallel section for the loop of isothermic connections of the mean curvature sphere congruence,
given by the fixed linear sphere complex, into a linear conserved quantity for the isothermic loop
of flat connections of the original isothermic net.

Thus the (discrete) “special isothermic surfaces” discussed in this paper are generalizations of
(discrete) constant mean curvature surfaces. They come with a similar transformation theory, as
we shall see in Sects 2 and 3 of the present text. In Sect 4 of the paper we discuss special isothermic
surfaces of type 2, that is, isothermic surfaces admitting a polynomial conserved quantity of degree
2: these are discrete versions of Bianchi’s “special isothermic surfaces” [2] that are intimately
related to deformations of quadrics — and that motivated much of the original research of the
transformation theory of isothermic surfaces. In particular, we provide geometric characterizations
of these type 2 special isothermic surfaces in terms of their transformations, similar to the classical
characterizations in the smooth case [9, §§84ff] and [7].

This paper is a condensation of [6], all theoretical results of this text can be found there. However,
here we focus on the results that are particular to the key ideas outlined above and hope to provide
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more concise and clear statements of the key results, as well as more succinct arguments of proof.
Furthermore, we provide here a new and interesting example of a discrete special isothermic torus
of type 2, that touches upon global questions relating to the transformations of isothermic surfaces
or nets, cf [1].

Fig 1: Discrete special isothermic surface of type 2, cf [1] or [11, §5.4.25]

Acknowledgements. The third author expresses his gratitude to Vienna University of Technology
for financial support and their hospitality during the preparation of this paper.

The figures in this text were created using Mathematica.

2. Special isothermic nets

We consider discrete isothermic nets f : Z2 → S3 in the (conformal) 3-sphere, that is, nets with a
real-valued function (ij) 7→ aij on (unoriented) edges, aij = aji, that is constant across elementary
quadrilaterals, aij = akl on any elementary quadrilateral (ijkl) of Z2, and that factorizes the cross
ratio of faces,

crijkl := cr(fi, fj , fk, fl) =
aij
ail
,

cf [11, Sect 5.7] or [4, Sect 4.3]. For simplicity we restrict to Z2 as a domain, but most of
the presented results will remain true when Z2 is replaced by a 2-dimensional quadrilateral cell
complex.

A discrete isothermic net f comes with an associated “isothermic” loop of flat connections (Γt)t∈R
on the (trivial) vector bundle Z2 ×R4,1 → Z

2 over Z2: we adopt the classical model of Möbius
geometry, cf [11], where the conformal 3-sphere

S3 ∼= L4/R = {span{Y } ⊂ R4,1 | 〈Y, Y 〉 = 0}

and f : Z2 → S3 is thought of as a null line bundle, f = span{F} for a lightcone-valued map F .
When f is now isothermic, its associated isothermic loop of (flat) connections Γt is given by (see
[6, Lemma 2.5] or [8, Cor 3.8])

Γtij : R4,1
j → R

4,1
i , Γtij(X) =


(1− taij)X if X ∈ fi,

(1− taij)−1X if X ∈ fj ,
X if X ⊥ fi ⊕ fj .

(2.1)

Each Γt is regarded as a connection since ΓtijΓ
t
ji = 1; this connection is flat since it has trivial

monodromy, ΓtijΓ
t
jkΓtklΓ

t
li = 1, around each elementary quadrilateral (ijkl).

As the Γt ∈ SO(R4,1) are flat they come with gauge transformations T t ∈ SO(R4,1) that relate
them to the trivial connection Γ0 = id, T tj = T ti Γtij . These are the Calapso transformations of f .

For any fixed t the Calapso transform f t = T tf : Z2 → S3 of f is a new isothermic net, see [11,
Sect 5.7]. The Calapso transformations T t govern the transformation theory of isothermic nets:

any Darboux transform f̂ : Z2 → S3 of f is characterized by the existence of a parameter µ so
that Tµf̂ ≡ const, that is, by the fact that f̂ = span{F̂} is spanned by a Γµ-parallel section F̂ :

0 = d(TµF̂ )ij = Tµi (ΓµijF̂j − F̂i) ⇔ ΓµijF̂j = F̂i.
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Here we let
dGij := Gj −Gi and Gij := 1

2 (Gj +Gi)

denote the discrete “derivative” and the edge function associated to a function G defined on the
vertices of our base complex Z2, so that, for example, d(GF ) = GijdFij + dGijFij .

These observations may motivate the following definition:

Def 1. Let f : Z2 → S3 be an isothermic net and R 3 t 7→ Γt be its associated isothermic loop
of flat connections. A polynomial conserved quantity of f is a map

R× Z2 3 (t, i) 7→ Pi(t) := Zit
N + Yit

N−1 + . . .+Qit
0 ∈ R4,1[t] (2.2)

so that P is Γt-parallel for every fixed t, that is, ΓtijPj(t) = Pi(t).

Clearly the space of polynomial conserved quantities of f is a vector space. Further, since Γt are
metric connections, d(|P (t)|2)ij = 0, showing that the (real) polynomial |P (t)|2 of degree 2N has
constant coefficients, e.g., |Z|2 ≡ const.

Expanding the condition on a polynomial conserved quantity to be a loop of parallel sections for
the connections of an isothermic loop yields

dPij =
taij
〈Fi,Fj〉{〈Pj(t), Fj〉Fi − 〈Pi(t), Fi〉Fj}, (2.3)

where F : Z2 → L4 denotes some lightcone lift of the underlying isothermic net, f = span{F}.
Comparing coefficients leads, in particular, to conclusions on the bottom and top coefficients Q
and Z of a polynomial conserved quantity (2.2):

Q. We obtain dQij = 0, implying that Q = const. Hence every polynomial conserved quantity
produces a corresponding 3-dimensional quadric of constant sectional curvature κ = −|Q|2,
cf [11, Sect 1.4]:

Q3 := {X ∈ L4 | 〈X,Q〉 = −1} (2.4)

Z. Here we learn that Zi ⊥ fi for all vertices i ∈ Z2, and that, for every edge (ij) of Z2,

Zi + aij
〈Yj ,Fj〉
〈Fi,Fj〉Fi = Zj + aij

〈Yi,Fi〉
〈Fi,Fj〉Fj =: κij .

As Zi ⊥ fi implies |Zi|2 ≥ 0, with equality iff Zi ∈ fi, while |Z|2 ≡ const, we infer that Z is
either a (special) lift of f or |Zi|2 > 0 at every vertex i ∈ Z2.

In the latter case we can, without loss of generality, assume that |Z|2 ≡ 1 so that

Z : Z2 → S3,1 := {X ∈ R4,1 | 〈X,X〉 = 1}

defines a (discrete) sphere congruence, cf [11, Chap 1] or [4, Sect 9.3], so that f envelops Z
and κij define the curvature spheres of the corresponding principal contact element net or
discrete Legendre map, cf [4, Sect 3.5] or [8].

Def 2. A polynomial conserved quantity (2.2) is normalized if |Z|2 ≡ 1. A special isothermic net
of type N is a discrete isothermic net f that admits a normalized polynomial conserved quantity
of degree N , but not of any lower degree.

Thus a special isothermic net f : Z2 → S3 comes with a naturally associated enveloped sphere
congruence Z as well as a natural ambient spaceform Q3 given by the constant coefficient Q of its
normalized polynomial conserved quantity, see (2.4).

Note that a special isothermic net f of type 0 must take values in a 2-sphere: if Z = Q is constant
it defines a fixed 2-sphere in S3 that is enveloped by f , in particular, is incident with f .

A special isothermic net of type 1 has constant mean curvature in its associated space Q3 of
constant curvature, where Z becomes its mean curvature sphere congruence, just as in the smooth
case, cf [7, Prop 2.5]. This situation has been comprehensively discussed in [6, Sect 5].
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Thus we will later be most interested in special isothermic nets of type 2, the discrete analogue of
Bianchi’s classical “special isothermic surfaces” see [2], cf [9, §84]. These isothermic surfaces admit
beautiful geometric characterizations in terms of their (isothermic) transformations, which rely on
configurations of circles associated to the surface or net: recall that a circle in the conformal S3

can be identified with a Minkowski 3-space in R4,1, cf [11, Sect 1.2].

• Given a discrete net f : Z2 → S3, an incident sphere congruence Z : Z2 → S3,1, Z ⊥ f ,
defines a “contact element” or “normal direction” at every vertex fi. If adjacent contact
elements have a common sphere κij then f is a “principal net” that is enveloped by the
sphere congruence Z (and the corresponding contact element map is a discrete “principal
contact element net” of [4, Sect 3.5] or “Legendre map” of [8]). This is the case if and only
if there is an edge circle cij that intersects both spheres Zi and Zj orthogonally in fi and fj ,
respectively. Algebraically, these orthogonal edge circles of (f, Z) are given by

cij = span{fi, fj , Zi, Zj} = span{fi, fj , Zi} = span{fi, fj , Zj}. (2.5)

• Given, additionally, a second net f̂ : Z2 → S3 associated with f in a pointwise manner, a
congruence of circles ĉ can be constructed from the contact element net (f, Z) by requiring

that ĉi intersect Zi orthogonally in fi and also pass through f̂i. Algebraically, this orthogonal
vertex circle congruence associated to the triple (f, Z, f̂) is given by

ĉi = span{fi, Zi, f̂i}. (2.6)

• Finally, given two associated nets f, f̂ : Z2 → S3 so that endpoints of corresponding edges
are concircular, we obtain a family of edge circles ĉij associated to the pair (f, f̂) of nets,

ĉij = span{fi, fj , f̂i} = span{fi, fj , f̂j}. (2.7)

3. Transformations

Just as for constant mean curvature surfaces, the isothermic transformations descend to transfor-
mations of special isothermic surfaces of type N in general. In particular, the Calapso transforma-
tion of isothermic surfaces descends to a Lawson correspondence for special isothermic surfaces,
and special Darboux transformations give rise to Bäcklund transformations.

We start by analyzing the interplay between the Calapso transformation and polynomial conserved
quantities:

Thm & Def 3. If f is special isothermic of type N then so are its Calapso transforms fµ.
We say that a special isothermic surface f and its Calapso transforms fµ are related by Lawson
correspondence.

Proof. As the Calapso transform fµ = Tµf of f is isothermic it comes with an isothermic loop of
connections

Γµ,tij = Tµi Γµ+tij (Tµj )−1 with Tµ,tTµ = Tµ+t

as corresponding Calapso transformations, see [11, §5.7.30]. Hence, if P (t) is a polynomial con-
served quantity of f , then

Pµ(t) := TµP (µ+ t)

defines a polynomial conserved quantity of fµ of the same degree.

Recall that a Darboux transformation f̂ = span{F̂} of a discrete isothermic net f : Z2 → S3

is given by a Γµ-parallel lightcone section F̂ , see [11, Lemma 5.7.20]. Thus an isothermic net

f and any of its Darboux transforms f̂ have concircular edges, dim span{fi, fj , f̂i, f̂j} = 3, and

therefore give rise to a family of edge circles (2.7) of the pair (f, f̂) — which therefore qualifies as
a Ribaucour pair in the Möbius geometric sense, see [11, Sect 8.3].
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Lemma 4. Let f̂ be a Darboux transform of a special isothermic net f of type N , with normalized
polynomial conserved quantity P (t) of minimal degree N . Then f̂ is special isothermic of type at

most N + 1, and of type at most N if P (µ) ⊥ f̂ .

Proof. For p, p̂ ∈ S3 = L4/R and q ∈ R we let (cf (2.1))

Γqp,p̂ : R4,1 → R
4,1, Γqp,p̂(Y ) :=

{
q Y if Y ∈ p,

q−1 Y if Y ∈ p̂,
Y if Y ⊥ p⊕ p̂.

(3.1)

Then T̂ t = T tΓ
1−t/µ
f,f̂

, see [6, Lemma 4.2] (cf [11, §5.7.35]), and

P̂ (t) := (t− µ)Γ
1−t/µ
f̂,f

P (t) (3.2)

yields a polynomial conserved quantity for f̂ : clearly T̂ tP̂ (t) ≡ const and P̂ (t) is polynomial of
degree at most N + 1 by (2.3) since Z ⊥ f ; further, |P̂ (t)|2 = (t − µ)2|P (t)|2 so that P̂ (t) is
normalized as soon as P (t) is.

If additionally P (µ) ⊥ f̂ at one hence all points, then µ is a zero of P̂ , P̂ (µ) = 0, so that P̂ (t) of

(3.2) has a factor (t − µ) and Γ
1−t/µ
f̂,f

P (t) defines a normalized polynomial conserved quantity of

degree at most N for f̂ .

As an example consider a Clifford torus f : Z2 → S3 in S3: as a constant mean curvature net it is
special isothermic of type 1. Hence, its Darboux transforms will generically be special isothermic
of type 2, analogous to the smooth case [7, Thm 3.2]. Remarkably, there exist doubly periodic

Darboux transforms f̂ : Z2 → S3 for certain (periodic) discrete Clifford tori f : Z2 → S3 and
a suitable choice of the spectral parameter µ, just as in the smooth case, see [1] or [11, §5.4.25].
Fig 1 shows a discrete special isothermic torus of type 2 that is obtained as a Darboux transform
of a 9-fold covering of a suitable (discrete) Clifford torus in S3.

The second claim of Lemma 4 gives rise to the following definition:

Def 5. A Bäcklund transform f̂ of a special isothermic net f with normalized polynomial con-
served quantity P (t) of minimal degree is a Darboux transform so that P (µ) ⊥ f̂ .

It is also straightforward to verify symmetry of the Bäcklund transformation between special
isothermic nets of type N , using that

P̂ (µ) = limt→µ Γ
1−t/µ
f̂,f

P (t) = P (µ)− 〈P (µ),F 〉
〈F̂ ,F 〉 F̂ + . . . F ⊥ F.

To understand the geometry of the Bäcklund transformation observe that the (reduced) polynomial
conserved quantity

P̂ (t) = Γ
1−t/µ
f̂,f

P (t) = tN Ẑ + tN−1Ŷ + . . .+ Q̂

of a Bäcklund transform f̂ of a special isothermic net f of type N , cf (3.2), satisfies equations
analogous to (2.3), but “in the transformation direction”. Hence

(i) Q̂ = Q, so that f̂ takes values in the same space of constant curvature as f does; and

(ii) Z + 1
µ
〈Ŷ ,F̂ 〉
〈F,F̂ 〉F = Ẑ + 1

µ
〈Y,F 〉
〈F,F̂ 〉 F̂ , showing that corresponding contact elements, (f, Z) and

(f̂ , Ẑ), of f and f̂ contain a common sphere, that is, the Bäcklund transformation qualifies
as a Ribaucour transformation in the Lie geometric sense, see [4, Sect 3.5].

The Bäcklund transformation also satisfies the usual permutability theorem, Bµ0Bµ1 = Bµ1Bµ0 ,
where Bµf denotes a Bäcklund transform with respect to spectral parameter µ:

Thm 6 (Bianchi permutability). Let f̂0, f̂1 be Bäcklund transforms with parameters µ0 6= µ1

of a special isothermic net f . Then there is a common Bäcklund transform f01 of f̂ i with parameter
µ1−i, i = 0, 1.

Proof. We show that the corresponding permutability theorem for the Darboux transformation
of isothermic nets, see [11, §5.7.28], descends to this theorem for the Bäcklund transformation of
special isothermic nets.

5
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Thus suppose that f̂ i are given by lightcone lifts F̂ i satisfying Tµi F̂ i ≡ const and F̂ i ⊥ P (µi),

where P (t) is a normalized degree N polynomial conserved quantity of f ; let P̂ i(t) = Γ
1−t/µi

f̂i,f
P (t)

denote the corresponding degree N polynomial conserved quantities of f̂ i, i = 0, 1. We aim to
show that

P 01(t) := Γ
1−t/µ1

f01,f̂0
P̂ 0(t) = Γ

1−t/µ0

f01,f̂1
P̂ 1(t)

yields a polynomial conserved quantity for the isothermic net f01 = Γ
µ1/µ0

f̂0,f̂1
f , obtained from the

Bianchi permutability theorem for the Darboux transformation of discrete isothermic nets. Now
the key argument is that

Γ
1−t/µ1

f01,f̂0
Γ
1−t/µ0

f̂0,f
= Γ

(1−t/µ0)/(1−t/µ1)

f̂0,f̂1
= Γ

1−t/µ0

f01,f̂1
Γ
1−t/µ1

f̂1,f
.

Firstly, this shows that P 01(t) above is well defined. Secondly, we conclude that

P 01(µ0) = limt→µ0
Γ
(1−t/µ0)/(1−t/µ1)

f̂0,f̂1
P (t) = P (µ0)− 〈P (µ0),F̂

1〉
〈F̂ 0,F̂ 1〉 F̂

0 + . . . F̂ 1 ⊥ F̂ 1,

showing that f̂0 is a Bäcklund transform of f01. By symmetry, f̂1 is a Bäcklund transform of f01

as well, which completes the argument.

As in the case of the Darboux transformation, “higher dimensional” permutability theorems can
now be proved by purely combinatorial arguments, for example, given three Bäcklund transforms
of a special isothermic net, a “Bianchi cube” can be constructed in a unique way: repeated ap-
plication of the above permutability theorem leads to a configuration of eight special isothermic
nets associated with the vertices of a cube so that the edges of that cube signify Bäcklund trans-
formations with parameters that are equal on opposite edges of the faces of the cube. In fact,
a more structural analysis would have revealed that the above theorem could have been proven
by using that “3D-consistency” of a “2D-system” implies higher dimensional consistency, cf [4],
interpreting the above permutability theorem as “4D-consistency”.

If P (t) is a (normalized) polynomial conserved quantity of a special isothermic net f and |P (µ)|2 =

0 for some µ then f̂ = span{P (µ)} yields a Bäcklund transform of f :

Def 7. If |P (µ)|2 = 0 for the normalized polynomial conserved quantity P (t) of a special isother-

mic net f then f̂ := span{P (µ)} will be called a complementary net of f .

Note that a special isothermic net f of type N has at most 2N complementary nets. In the case
N = 1 of a net of constant mean curvature H in a quadric Q3 of constant sectional curvature κ,
see (2.4), the condition 0 = |P (t)|2 = t2 − 2Ht− κ for a complementary net leads to the Lawson
invariant H2 +κ as the quantity governing the existence of complementary nets. In fact, constant
mean curvature surfaces with positive Lawson invariant can (in both the smooth and discrete
cases) be characterized in terms of their complementary nets, see [6, Sect 4.3] and [5, Sect 4]:
the simplest case is Bonnet’s theorem on parallel constant mean curvature surfaces in the smooth
case, and the original definition of constant mean curvature nets as particular isothermic nets via
“parallel” Darboux transformations in the discrete case, cf [10, Sect 5].

4. Quadratic conserved quantities

We shall see that complementary nets play a similarly crucial role in the case of type 2 special
isothermic nets, the discrete analogues of Bianchi’s “special isothermic nets” [2], cf [9, §84]. We
start by investigating the geometry of complementary nets of a type 2 special isothermic net f .

Suppose that

F̂n = P (µn) = µ2
nZ + µnY +Q (n = 0, . . . , N)

yield (Γµ-parallel lightcone lifts of) N + 1 complementary nets of a special isothermic net f of
type 2. If N = 1 we conclude that the planes (in the spaceform ambient geometry given by (2.4))

ên = span{F,Z,Q, F̂n} = span{F,Z,Q, Y }

6
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of the orthogonal (vertex) circles (2.6) coincide. On the other hand, if f has N + 1 = 3 comple-
mentary nets, then

∀i ∈ Z2 : Q ∈ span{F̂ni |n = 0, 1, 2},

showing that the three complementary nets f̂n of f must be (pointwise) collinear in the ambient
spaceform geometry of f .

The following two theorems provide “reverse engineering”, that is, construction of a polynomial
conserved quantity from the respective geometric configurations.

Thm 8. Let f be an isothermic net and f̂n, n = 0, 1, 2, three Darboux transforms of f . If f̂n are
pointwise collinear in a suitable ambient spaceform geometry (2.4) then f is, generically, special
isothermic of type 2.

In the second theorem an enveloped sphere congruence S replaces one of the Darboux transforms,
in order to obtain the “orthogonal vertex circle” congruences i 7→ ĉni of (2.6).

Thm 9. Let f : Z2 → S3 be an isothermic net, S : Z2 → S3,1 an enveloped sphere congruence
and f̂n, n = 0, 1, two Darboux transforms of f . If the planes ên of the associated orthogonal vertex
circles (2.6) coincide in a suitable spaceform geometry (2.4) then, generically, f has a quadratic
conserved quantity.

To prove both theorems we use the following more general lemma that provides a construction of
a degree N polynomial conserved quantity P (t) from (Γµn -parallel lifts F̂n of) N + 1 Darboux

transforms f̂n, n = 0, . . . , N , for pairwise distinct µn of an isothermic net f , cf [6, Lemma 4.9]:

Lemma 10. If, for suitable constants αn ∈ R, n = 0, . . . , N ,

Z :=
∑N
n=0 αnF̂

n ⊥ f, then P (t) :=
∑N
n=0 αnF̂

n
∏
m 6=n(t− µm)

is a degree N polynomial conserved quantity for f .
Further, Z is the top degree coefficient and P (t) is normalized as soon as |Zi|2 = 1 at some i ∈ Z2;

and, in this case, f̂n are complementary nets of f .

Proof of Lemma 10. First note that P (µn) = const F̂n, so that f̂n are complementary nets as soon
as P (t) is a normalized polynomial conserved quantity. Clearly, Z is the top degree coefficient of
the degree N polynomial P (t).

We aim to show that P (t) is Γt-parallel for fixed t ∈ R, that is, for every edge (ij) of Z2

0 = ΓtijPj(t)− Pi(t),

which is a polynomial of degree N by (2.3) and the assumption that Z ⊥ f . As P (µn) = const F̂n

this polynomial vanishes for N + 1 parameter values t = µn, n = 0, . . . , N , hence vanishes
identically.

Finally, |P (t)|2 = t2N |Z|2 + . . . + t0|Q|2 is a polynomial with constant coefficients, as P (t) are
parallel with respect to the metric connections Γt. Thus, in particular, |Z|2 ≡ const.

We have not used that F̂n be isotropic in order to derive that P (t) is a polynomial conserved

quantity. Thus the assumptions can accordingly be relaxed, at the cost of losing that f̂n become
complementary nets of f .

Proof of Thm 8. By the assumption of f̂n being collinear in a suitable quadric (2.4) of constant
curvature we learn that the vector Q ∈ R4,1 \ {0} defining Q3 can be written as

Q =
∑2
n=0 βnF̂

n

with suitable functions βn : Z2 → R, n = 0, 1, 2, and Γµn -parallel lifts F̂n of f̂n. First we show
that the βn are constant:

0 = dQij =
∑2
n=0 d(βn)ijF̂

n
i + (βn)jdF̂

n
ij =

∑2
n=0 d(βn)ijF̂

n
i mod fi ⊕ fj .

7
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Thus assuming, for genericity, that the three families of edge circles (2.7) associated to the three

pairs (f, f̂n) do not become cospherical, F̂ni are linearly independent mod fi⊕fj , and we conclude
that d(βn)ij = 0. Now, cf (2.3),

0 = dQij =
∑2
n=0 βndF̂

n
ij =

aij
〈Fi,Fj〉{〈Z,F 〉jFi − 〈Z,F 〉iFj} for Z :=

∑2
n=0 βnµnF̂

n

and any lift F of f , showing that Z ⊥ f . By genericity Z /∈ f , hence |Z|2 > 0 and without loss of
generality |Zi|2 = 1 at some i ∈ Z2. The claim now follows with Lemma 10 above as soon as we
assume, for genericity again, that the parameters µn are distinct.

In a completely analogous way one proves that two Darboux transforms that are antipodal in a
suitable spaceform subgeometry lead to a normalized linear conserved quantity, thus to a charac-
terization of constant mean curvature nets in spaceforms, cf [6, Thm 4.11] or [5, Sect 5].

Proof of Thm 9. Here we express the equality assumption on the planes of the orthogonal vertex
circles ĉn, see (2.6), in a spaceform geometry (2.4) given by Q ∈ R4,1 \ {0} as

ê0 = span{F, S,Q, F̂ 0} = span{F, S,Q, F̂ 1} = ê1,

where, again F and F̂n denote (Γµn -parallel) lifts of f and f̂n, respectively. Here we already make
the (implicit) genericity assumption that the orthogonal vertex circles not be straight lines in Q3.
Hence ê0 = ê1 yields the linear dependence

α0F̂
0 + α1F̂

1 + α∞Q = βS + γF =: Z

with suitable functions αn, β, γ : Z2 → R, where neither α0 nor α1 vanish as dim ên = 4. We aim
to show that αn can be chosen constant in order to apply Lemma 10: note that Q is Γµ∞ -parallel
with µ∞ := 0 since dQ = 0 and Γ0 = id.

Now
dZij = d(α∞)ijQ+ d(α0)ijF̂

0
ij + d(α1)ijF̂

1
ij + (α0)ijdF̂

0
ij + (α1)ijdF̂

1
ij ,

where dZij , dF̂
n
ij ∈ cij , the orthogonal edge circle of (2.5). With the further genericity assumption

that these orthogonal edge circles not be straight in Q3 and their planes

eij = span{Fi, Fj , Q, Si} = span{Fi, Fj , Q, Sj} 6= ên (n = 0, 1),

hence F̂nij /∈ eij , we infer that dαn = 0 as soon as dα1−n = 0 as 0 = d(α0)ijF̂
0
ij+d(α1)ijF̂

1
ij mod eij .

As both, α0 and α1, have no zeroes, we may without loss of generality assume that either, hence
both, are constant. Then 0 = d(α∞)ijQ+ d(α0)ijF̂

0
ij + d(α1)ijF̂

1
ij mod cij implies that dα∞ = 0

as well.

With a final genericity assumption, that f̂n be Darboux transforms for different parameters µn,
Lemma 10 applies to yield existence of a quadratic conserved quantity for f .

A completely analogous line of arguments proves the existence of a (normalized) linear conserved

quantity when two Darboux transforms f̂n, n = 0, 1, are given so that the associated congruences
of orthogonal vertex circles (2.6) coincide, ĉ0 = ĉ1, cf [6, Thm 4.14].
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Universidade de Lisboa
1749-016 Lisboa (Portugal)
Email: susantos@ptmat.fc.ul.pt

9


