150 research outputs found
Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity
Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites
The effect of Puerariae radix on lipoprotein metabolism in liver and intestinal cells
BACKGROUND: Animal studies investigating the beneficial effects of Puerariae radix on cardiovascular disease have suggested this plant possesses anti-diabetic and lipid lowering properties. However, the exact mechanism by which Puerariae radix affects lipid metabolism is currently unknown. The aim of this study was to investigate the effect of the water extract of Puerariae radix on the secretion of VLDL and chylomicrons from HepG2 liver cells and CaCo2 cells, respectively, in humans. METHODS: The amount of apoB(100 )(a protein marker for VLDL) and apoB(48 )(a protein marker for chylomicrons) in cells and media were quantified by Western Blotting and enhanced chemiluminescence (ECL). Total, free and esterified cholesterol concentrations were measured by gas liquid chromatography. RESULTS: Treatment of cells with water extract of Puerariae radix significantly decreased apoB(100 )production and secretion from HepG2 cells up to 66% in a dose dependent manner. The intracellular total cholesterol and free cholesterol concentration in HepG2 cells also decreased with increasing concentration of the Puerariae radix. In contrast, water extract of Puerariae radix attenuated apoB(48 )concentrations in cells, but not apoB(48 )secretion from CaCo2 enterocytes. CONCLUSIONS: Collectively, our findings suggest that the water extract of Puerariae radix attenuates the hepatic lipoprotein production and secretion. Our present cell culture findings may explain why circulating VLDL and LDL levels were attenuated in animals supplemented with Puerariae radix. Since decreasing the production and secretion of atherogenic lipoproteins decreases the risk of development of cardiovascular disease, diets supplemented with radix may provide a safe and effective beneficial cardioprotective effects in humans
Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2)
Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects
Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation
The effect of functionalized nickel (Ni) nanoparticles capped with positively charged tetraheptylammonium on cellular uptake of drug quercetin into hepatocellular carcinoma cells (SMMC-7721) has been explored in this study via microscopy and electrochemical characterization as well as MTT assay. Meanwhile, the influence of Ni nanoparticles and/or quercetin on cell proliferation has been further evaluated by the real-time cell electronic sensing (RT-CES) study. Our observations indicate that Ni nanoparticles could efficiently improve the permeability of cancer cell membrane, and remarkably enhance the accumulation of quercetin in SMMC-7721 cells, suggesting that Ni nanoparticles and quercetin would facilitate the synergistic effect on inhibiting proliferation of cancer cells
Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli
The flavonoids genistein, biochanin A, luteolin, quercetin, and kaempferol are plant natural products with potentially useful pharmacological and nutraceutical activities. These natural products usually exist in plants as glycosides, and their glycosylation has a remarkable influence on their pharmacokinetic properties. The glycosyltransferases UGT71G1 and UGT73C8 from Medicago truncatula are excellent reagents for the regioselective glycosylation of (iso)flavonoids in Escherichia coli grown in Terrific broth. Ten to 20 mg/L of either genistein or biochanin A 7-O-glucoside was produced after feeding genistein or biochanin A to E. coli expressing UGT71G1, and similar levels of luteolin 4’-O- and 7-O-glucosides were produced after feeding luteolin to cultures expressing UGT73C8. For the production of kaempferol 3-O-glucoside or quercetin 3-O-glucoside, the Phe148Val or Tyr202Ala mutants of UGT71G1 were employed. Ten to 16 mg/L of either kaempferol 3-O- or quercetin 3-O-glucosides were produced on feeding kaempferol or quercetin to E. coli expressing these enzymes. More than 90% of the glucoside products were released to the medium, facilitating their isolation
Effect of in vitro gastrointestinal digestion on the total phenolic contents and antioxidant activity of wild Mediterranean edible plant extracts
The recent interest in wild edible plants is associated with their health benefits, which are mainly due to their richness in antioxidant compounds, particularly phenolics. Nevertheless, some of these compounds are metabolized after ingestion, being transformed into metabolites frequently with lower antioxidant activity. The aim of the present study was to evaluate the influence of the digestive process on the total phenolic contents and antioxidant activity of extracts from four wild edible plants used in the Mediterranean diet (Beta maritima L., Plantago major L., Oxalis pes-caprae L. and Scolymus hispanicus L.). HPLC-DAD analysis revealed that S. hispanicus is characterized by the presence of caffeoylquinic acids, dicaffeoylquinic acids and flavonol derivatives, P. major by high amounts of verbascoside, B. maritima possesses 2,4-dihydroxybenzoic acid, 5-O-caffeoylquinic acid, quercetin derivatives and kaempferol-3-O-rutinoside, and O. pes-caprae extract contains hydroxycinnamic acids and flavone derivatives. Total phenolic contents were determined by Folin-Ciocalteu assay, and antioxidant activity by the ABTS, DPPH, ORAC and FRAP assays. Phenolic contents of P. major and S. hispanicus extracts were not affected by digestion, but they significantly decreased in B. maritima after both phases of digestion process and in O. pes-caprae after the gastric phase. The antioxidant activity results varied with the extract and the method used to evaluate the activity. Results showed that P. major extract has the highest total phenolic contents and antioxidant activity, with considerable values even after digestion, reinforcing the health benefits of this species.European Union (FEDER funds through COMPETE)European Union (EU)European Union (FEDER)European Union (EU)Programa de Cooperacion Interreg V-A Espana - Portugal (POCTEP) 2014-2020 [0377_IBERPHENOL_6_E]project INTERREG - MD. Net: When Brand Meets PeopleFCT Portuguese Foundation for Science and Technolog
Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]
BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects
- …