281 research outputs found
The Effects of Contingency Management on Reading Achievement of Institutionalized Offenders
The hypotheses to be tested in this study are concerned with the use of contingency management. In general, the theory states that behavior normally occurring at a low rate may increase when it is followed by activities which are highly desirable to the student (Premack, 1965). Also suggested in the theory is that a response does not have a zero operant level (Bijou and Baer, 1961). It was assumed, then, that institutionalized offenders enrolled in remedial reading classes have an operant level of some degree for a specific response that could be strengthened by positively reinforcing that response. Because the usual reinforcers for academic learning frequently are not motivating for the offender, an attempt was made to determine the effects of contingency management on reading achievement of adult male felons
Internet Affairs: Partners’ Perceptions and Experiences of Internet Infidelity
This study utilizes an online survey (open and closed questions) to examine how those whose partners’ have engaged in online affairs define and experience online infidelity. As with offline affairs, respondents were most likely to define sexual (vs. emotional) behaviors as infidelity (e.g., cybersex, exchanging sexual self-images, sharing sexual fantasies online). However, thematic analysis of the qualitative data identified how online behaviors and spaces are confusing and that infidelity is defined more broadly and fluidly in the online context. This potentially explains why participants saw the Internet as facilitating affairs. Findings are discussed in relation to existing literature and study limitations
Tunability of Critical Casimir Interactions by Boundary Conditions
We experimentally demonstrate that critical Casimir forces in colloidal
systems can be continuously tuned by the choice of boundary conditions. The
interaction potential of a colloidal particle in a mixture of water and
2,6-lutidine has been measured above a substrate with a gradient in its
preferential adsorption properties for the mixture's components. We find that
the interaction potentials at constant temperature but different positions
relative to the gradient continuously change from attraction to repulsion. This
demonstrates that critical Casimir forces respond not only to minute
temperature changes but also to small changes in the surface properties.Comment: 4 figures;
http://www.iop.org/EJ/article/0295-5075/88/2/26001/epl_88_2_26001.htm
Critical Casimir effect in classical binary liquid mixtures
If a fluctuating medium is confined, the ensuing perturbation of its
fluctuation spectrum generates Casimir-like effective forces acting on its
confining surfaces. Near a continuous phase transition of such a medium the
corresponding order parameter fluctuations occur on all length scales and
therefore close to the critical point this effect acquires a universal
character, i.e., to a large extent it is independent of the microscopic details
of the actual system. Accordingly it can be calculated theoretically by
studying suitable representative model systems.
We report on the direct measurement of critical Casimir forces by total
internal reflection microscopy (TIRM), with femto-Newton resolution. The
corresponding potentials are determined for individual colloidal particles
floating above a substrate under the action of the critical thermal noise in
the solvent medium, constituted by a binary liquid mixture of water and
2,6-lutidine near its lower consolute point. Depending on the relative
adsorption preferences of the colloid and substrate surfaces with respect to
the two components of the binary liquid mixture, we observe that, upon
approaching the critical point of the solvent, attractive or repulsive forces
emerge and supersede those prevailing away from it. Based on the knowledge of
the critical Casimir forces acting in film geometries within the Ising
universality class and with equal or opposing boundary conditions, we provide
the corresponding theoretical predictions for the sphere-planar wall geometry
of the experiment. The experimental data for the effective potential can be
interpreted consistently in terms of these predictions and a remarkable
quantitative agreement is observed.Comment: 30 pages, 17 figure
Drag forces on inclusions in classical fields with dissipative dynamics
We study the drag force on uniformly moving inclusions which interact
linearly with dynamical free field theories commonly used to study soft
condensed matter systems. Drag forces are shown to be nonlinear functions of
the inclusion velocity and depend strongly on the field dynamics. The general
results obtained can be used to explain drag forces in Ising systems and also
predict the existence of drag forces on proteins in membranes due to couplings
to various physical parameters of the membrane such as composition, phase and
height fluctuations.Comment: 14 pages, 7 figure
Probing impulsive strain propagation with x-ray pulses
Pump-probe time-resolved x-ray diffraction of allowed and nearly forbidden
reflections in InSb is used to follow the propagation of a coherent acoustic
pulse generated by ultrafast laser-excitation. The surface and bulk components
of the strain could be simultaneously measured due to the large x-ray
penetration depth. Comparison of the experimental data with dynamical
diffraction simulations suggests that the conventional model for impulsively
generated strain underestimates the partitioning of energy into coherent modes.Comment: 4 pages, 2 figures, LaTeX, eps. Accepted for publication in Phys.
Rev. Lett. http://prl.aps.or
Normal and lateral critical Casimir forces between colloids and patterned substrates
We study the normal and lateral effective critical Casimir forces acting on a
spherical colloid immersed in a critical binary solvent and close to a
chemically structured substrate with alternating adsorption preference. We
calculate the universal scaling function for the corresponding potential and
compare our results with recent experimental data [Soyka F., Zvyagolskaya O.,
Hertlein C., Helden L., and Bechinger C., Phys. Rev. Lett., 101, 208301
(2008)]. The experimental potentials are properly captured by our predictions
only by accounting for geometrical details of the substrate pattern for which,
according to our theory, critical Casimir forces turn out to be a sensitive
probe.Comment: 6 pages, 3 figure
Phase separation transition in liquids and polymers induced by electric field gradients
Spatially uniform electric fields have been used to induce instabilities in
liquids and polymers, and to orient and deform ordered phases of
block-copolymers. Here we discuss the demixing phase transition occurring in
liquid mixtures when they are subject to spatially nonuniform fields. Above the
critical value of potential, a phase-separation transition occurs, and two
coexisting phases appear separated by a sharp interface. Analytical and
numerical composition profiles are given, and the interface location as a
function of charge or voltage is found. The possible influence of demixing on
the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
- …